
Cooperative State University Mannheim

Study Report

Development of an Autonomous Referee
Software for the Small Size League

by Lukas Magel

- Matriculation.: 9273080 -

- Study Course: TINF13ITIN -

TIGERS

D
H

B
W

 M A NNH
E

IM

TIGERs Mannheim
Small Size League
Robot Soccer Team

Supervisor: Prof. Dr. J. Poller

Statutory Declaration

I declare that I have authored this thesis independently, that I have not used other than
the declared sources / resources, and that I have explicitly marked all material which
has been quoted either literally or by content from used sources.

Mannheim, July 16, 2016

Contents

List of Figures IV

List of Tables V

List of Abbreviations VI

1 Introduction 1
1.1 RoboCup . 1
1.2 Small Size League . 1
1.3 TIGERs Mannheim . 2
1.4 AutoRef Source Code . 2

2 Motivation 3

3 Technical Background 8
3.1 Game infrastructure . 8

3.1.1 Vision System . 8
3.1.2 Referee . 8
3.1.3 Summary . 10

4 Implementation of the AutoRef 11
4.1 TIGERs AI software . 11
4.2 Overall structure . 12
4.3 Calculators . 13
4.4 Event Engine . 16

4.4.1 Events . 16
4.4.2 Detector Processing . 17
4.4.3 Implementation of the Detector Components 18

II

Contents

4.5 AutoRef Engine . 28
4.5.1 Active AutoRef Engine . 28
4.5.2 Passive AutoRef Engine . 32

5 Conclusion 33

Appendices 34

A Event Types 34

References 36

III

List of Figures

1.1 SSL robots of different teams with ball 2

3.1 Referee commands and game states . 9
3.2 Flow of data through all game systems 10

4.1 AutoRef components shared with the TIGERs AI software 11
4.2 AutoRef Structure . 12
4.3 Selection of candidates . 15
4.4 Chain of decisions for the Ball Left Field Detector 19
4.5 Bot Collision Speed Calculation . 21
4.6 Robots located fully (a) and partially (b) inside the defense area 23
4.7 State machine of the Double Touch Detector 25
4.8 State machine of the Dribbling Detector 27
4.9 State machine of the Goal Detector . 28
4.10 AutoRef feedback loop . 29
4.11 Chain of decisions for AutoRef Stop State 31
4.12 Chain of decisions for AutoRef Prepare Kickoff State 32

IV

List of Tables

4.1 Attributes of an event . 16
4.2 Attributes of a FollowUpAction . 17
4.3 Bot In Defense Area Punishments . 23

A.1 Event types . 35

V

List of Abbreviations

SSL Small Size League

AI Artificial Intelligence

TIGERs Team Interacting and Game Evolving Robots

DHBW Duale Hochschule Baden-Württemberg

GUI Graphical User Interface

VI

1 Introduction

This chapter of the report shall give a brief introduction of the RoboCup in general as
well as the Small Size League (SSL).

1.1 RoboCup

The RoboCup is an international scientific initiative to promote robotics and artificial
intelligence (AI) research. It was originally founded with the goal of developing a hu-
manoid robotic soccer team that will be capable of competing against the most recent
World Cup champion in 2050 [1]. The RoboCup comprises multiple leagues which tar-
get different areas of research. The TIGERs Mannheim participate in the Small Size
League which focuses on the problem of intelligent multi-agent cooperation and control
in a highly dynamic environment [2].

1.2 Small Size League

In the SSL two teams of 6 robots each compete against each other on a rectangular
field of 9m by 6m using a regular golf ball. All robots must be of cylindrical shape
and must not exceed a diameter of 180mm and a height of 150mm. The interior of the
robots however can be designed freely to the likings of each team as long as the exterior
complies with the official rules. The robots are equipped with a kicking device that is
capable of accelerating the ball in a straight line or a vertical chip.

1

1 Introduction

Figure 1.1: SSL robots of different teams with ball

1.3 TIGERs Mannheim

The TIGERs Mannheim is a group of students from the Cooperative State University
(DHBW) Mannheim that participates in the RoboCup SSL. The team was founded in
2009 and consists of 30 students from different fields of research. The team members
design the mechanical and electronic hardware and develop the artificial intelligence
called Sumatra. Sumatra is written in Java and controls the robots during the games. It
consists of several modules that fulfill different tasks like processing the vision and referee
data, planning the strategy of the team and the paths of each robot and visualizing the
decisions of the AI in a graphical user interface (GUI). The source code of Sumatra can
be downloaded freely from the team website.

1.4 AutoRef Source Code

As shortcut for anyone interested in the source code of the AutoRef application: It can
be downloaded freely from the Gitlab repository on the team website [3].

2

2 Motivation

Currently all games in the RoboCup Small Size League are controlled by a human referee.
He is in charge of enforcing the rules of the game and prosecuting all infringements that
occur on the field. Due to the multiplicity and complexity of rules this task can be
quite demanding for a single person as he must supervise the actions and positions of all
robots on the field simultaneously. One example for this is the regular free-kick scenario
that is performed after rule infringements. The referee must ensure that at the time
of the kick no robot of the team that performs the kick is positioned too close to the
defense area of the defending team while at the same time the defending team must not
approach the ball before it has been kicked. Monitoring both conditions at the same
time can be quite challenging for a human referee but would be easily accomplished by
a computer based referee system that is aware of the locations of the robots on the field.
Contrary to other leagues that do not rely on a vision system in the SSL the positions of
all entities on the field are available for all parties over the game network. This puts the
league in a unique position to use this information for the automated monitoring of rule
infringements on the field. A first attempt to pursue this goal was made in 2014 with
a technical challenge to implement an autonomous referee that was capable of passively
detecting a subset of all possible rule infringements [4].

For the 2016 RoboCup a new technical challenge has been devised to reward the de-
velopment of an autonomous referee software (AutoRef) that is capable of actively con-
trolling a game [5]. It shall start and stop the game, award goals and detect a specified
set of rule infringements. The goal of this work is to develop an autonomous referee
software for submission to the RoboCup Technical Challenge. The software should meet
all requirements stated in the challenge description and support the human referee in its
task of controlling a game. In the following sections each of the infringements listed in
the challenge is explained in greater detail. Additionally, this report shall give a detailed
insight into the technical details and structure of the implemented software in chapter

3

2 Motivation

4.

Number of Players

Each team is allowed to play with up to six robots during a regular match [6, p. 5]. The
autonomous referee must ensure that no team places more than six robots on the field
and reduces the number of bots if shown a yellow card.

Pushing/Substantial contact

A robot must not make substantial contact with an opponent. The official rules define
substantial contact as follows:

Substantial contact is contact sufficient to dislodge the robot from its current
orientation, position, or motion in the case where it is moving [6, p. 26].

This rule is meant to protect slow moving or stationary robots from being damaged by
a fast moving opponent.

Multiple Defender

A robot other than the goalkeeper must not touch the ball while being positioned inside
his own defense area. If at the time the ball touches the robot it is positioned partially
inside the defense area the team is shown a yellow card [6, p. 25]. If it is positioned
entirely within the defense area the opposing team is awarded a penalty kick [6, p. 23].

Attacker in Defense Area

A robot must not touch the ball while being at least partially positioned inside the
opponent’s defense area or an indirect free kick is awarded to the opposing team [6,
p. 24].

Icing

An indirect free kick is awarded to the opposing team if a robot which is located inside
his own half of the field kicks the ball such that it crosses the midline and the goal line
without touching another robot or entering the goal [6, p. 24].

4

2 Motivation

This rule was added the the official rules to discourage “unintelligent” gameplay by
teams which try to directly score goals from a great distance.

Ball Speed

The ball velocity must not exceed 8m/s when kicked by a robot or an indirect free kick
is awarded to the opposing team [6, p. 24]. This rule was added to reduce the advantage
of a superior kicking device and to avoid kicks that could potentially harm spectators.

Robot Speed during Stop

During game stoppage the robots are not allowed to move faster than 1.5m/s or the
team will be shown a yellow card [6, p. 25]. This rule was added to prevent robot
collisions at high speeds which can occur if robots travel great distances across the field
to reposition themselves after the game has been stopped.

Maximum Dribbling Distance

A robot must not dribble the ball for more than 1m measured linearly from the position
where it first touched the ball or an indirect free kick is awarded to the opposing team [6,
p. 24]. A robot is considered to dribble the ball when there is no observable separation
between the ball and the robot [6, p. 26]. The rule was added in order to not give
robots with a superior dribbling device and unfair advantage. The rule does however
not prevent a robot from moving greater distances with the ball as long as it periodically
separates itself from the ball to give other robots the chance to gain possession of the
ball.

Touching the opponent goalkeeper

An indirect free kick is awarded to the opposing team if a robot touches the opponent
goalkeeper inside its defense area [6, p. 24]. This rule is meant to protect the goalkeeper
from aggressive attackers.

5

2 Motivation

Double Touch

The robot that takes a free kick is not allowed to touch the ball a second time until the
ball has touched another robot [6, p. 21]. The official rules further specify the criteria
for a double touch as follows:

It is understood that the ball may remain in contact with the robot or be
bumped by the robot multiple times over a short distance while the kick is
being taken, but under no circumstances should the robot remain in contact
or touch the ball after it has traveled 50 mm, unless the ball has previously
touched another robot [6, p. 22].

If it does not abide to the rule the game is stopped and a free kick awarded to the
opponent team.

Ball Out of Play

When the ball leaves the field a free kick is awarded to the opposing team of the robot
that last touched the ball. If the ball exits over the touch line a Throw-In (Indirect free
kick) is performed 100mm from the point where it left the field. However, if the ball
exits over the goal line a goal kick or a corner kick is awarded to the opposing team
depending on whether the ball was last touched by the attacking or the defending team.

Attacker to Defense Area Distance

When a free kick is performed the robots of the attacking team must not be positioned
too close to the defense area of the defending team at the time the ball is kicked. This
rule was added to prevent robots of the attacking teams to position themselves at the
defense area and block the defending robots of the other team before the free kick has
been performed.

Defender to Free Kick Point Distance

After a free kick command has been issued by the referee only the robots of the team
taking the kick are allowed to approach the ball. All robots of the opponent team must
remain at least 500mm from the ball until the kick has been taken [6, p. 29].

6

2 Motivation

Kick Timeout

After the referee signals a command to commence play through a kick the addressed
team is given 10 seconds to perform the kick. If the kick is not executed within this
time window the referee stops the game and issues a Force Start command to allow both
teams to approach and touch the ball [6, p. 22].

This rule gives the referee the option to cancel a command if the team is not capable
of performing the requested action due to hardware or software issues.

7

3 Technical Background

3.1 Game infrastructure

The following section shall give a more detailed description of the required infrastructure
that is used to conduct the games.

3.1.1 Vision System

Contrary to other leagues where each individual robot is fitted with a vision system to
track its surroundings the SSL uses a standardized camera system to locate the robots
and the ball on the field. For this purpose each robot is assigned a unique color pattern
that is installed on its top. During the game four cameras which are mounted above
the field perimeter take periodic images of each quadrant. The resulting stream is then
processed by a central computer that detects the position of the robots as well as the
ball on each image. The position data of all detected entities is afterwards forwarded to
the teams which participate in the game over a wired network. Each team runs its own
control computer which further processes the position data, plans the team’s strategy
and controls their own robots over a wireless link.

3.1.2 Referee

A regular game is led by two human referees which run the game and control the robots
by the means of special commands. These commands are pronounced verbally by the
referees and entered into a computer program (referee box) by the referee assistant. The
current command is then continuously broadcasted over the wired game network by the
referee box program. Figure 3.1 depicts the different referee commands as transitions
between multiple logical states. These states are a non-binding interpretation of the

8

3 Technical Background

referee commands as well as the current situation on the field and serve as a means to
better explain and name the current state of the game. In every logical state only a
subset of all possible commands represents a valid transition to the next state.

Halted

Stopped

Start

Stop Game

Timeout Start Kickoff

Force Start

Red Card

Yellow Card

Halt

Prepare
Kickoff

Normal Start

Running

Penalty Indirect Freekick

Command

State

legend

Prepare
Penalty

Throw-In
Corner

Kick
Goal
Kick

Team last
touched ball

attackersdefenders

Decision

Proceed if ball
is kicked / moves

Ball Placement

Ball
Placement

Timeout

Figure 3.1: Referee commands and game states [7]

A regular game lasts for two halftimes of ten minutes each and always starts in the
Halted state in which the bots are not allowed to move. When both teams are ready the
referee signals a Stop command and the game state transitions to the corresponding
Stopped state. The Stopped state serves as starting point for all actions that initiate a
play sequence. The first action in a half time is always a kick-off. To execute a kick-off
the referee first issues a Prepare Kickoff command for the team that will perform the
action. After a short wait period the referee signals the start of the kick-off by sending a
Normal Start command. The game then transitions into the Running state as soon as
the ball is kicked by the team executing the kick-off. In Running state both teams are
allowed to score a goal. If the referee detects a legal goal the game is stopped through a
Stop command and a kick-off is initiated. If however a rule infringement is committed

9

3 Technical Background

by one of the teams while the game is Running the referee stops the game and signals
an appropriate action. This action can either be a direct free kick, an indirect free kick
or a penalty kick depending on the infringement. This procedure is repeated until the
end of the halftime. If no team was able to take the lead and score more goals than the
other team the referee can extend the game by two additional halftimes of 5 minutes
each or demand a penalty shootout.

3.1.3 Summary

The overall flow of data through all essential systems involved in the game is depicted
as pipeline in figure 3.2.

Cameras
Vision
System

RefBox

Camera
Feed

Team
Computer

Vision
Frames

Referee
commands

Team
Robots

Wireless
Link

Game
Network

Figure 3.2: Flow of data through all game systems

Both the vision frames and the referee commands use a standardized message format
based on the Google Protocol Buffers language. They are broadcasted into the network
to be received by the teams. The communication between team computer and robots on
the other hand is not standardized and must be implemented by the teams themselves.

10

4 Implementation of the AutoRef

The following chapter explains the internal structure of the TIGERs AutoRef software.

4.1 TIGERs AI software

The AutoRef software requires several basic building blocks which are already imple-
mented as part of the TIGERs AI software (Sumatra). Because of this the software
is not built from scratch but rather shares a common set of functionality with the AI
software. For this reason, the Sumatra project is divided into several subprojects which
are also used by the AutoRef. Figure 4.1 depicts the AI software components in red
which are used as foundation for the AutoRef software.

Camera
Module

World
Predictor

Vision
Frames

Game
Network

World Info
Processor

Referee
Receiver

Referee
Commands

World
Frames

AutoRef
Module

GUI

Game State
Machine

Figure 4.1: AutoRef components shared with the TIGERs AI software

11

4 Implementation of the AutoRef

The external vision frames are received by the Camera Module and parsed into an
internal data structure. They are then passed into the World Predictor module which
employs a Kalman Filter to clear up the vision data and calculate velocity and acceler-
ation of the moving objects in the frames. The resulting frame is afterwards forwarded
to the World Info Processor that injects the current referee command into the frame.
The Game State Machine implements the state graph as shown in figure 3.1 to track the
game and derive the current state. The state is also stored in the frame. The resulting
WorldFrames are used by the AutoRef module which shall be explained in greater detail
in the next section.

Besides the processing pipeline the AutoRef also uses the GUI framework from Sumatra.
It simplifies the creation and reuse of individual views that are displayed in a modular
frame.

4.2 Overall structure

Figure 4.2 depicts the internal structure of the AutoRef software.

Event
DetectorEvent

Detector

World Info
Processor

World
Frames

AutoRef
Preprocessor

Possible
Goal

GameState
History

Ball Left
Field

Bot Last
Touched Ball

Calculators

AutoRef
Engine

Event
Engine

Frames Events

Event
Detector

Frame

Event

GUIRefBox

GameLog

Commands Log Entries

Figure 4.2: AutoRef Structure

In the AutoRef Preprocessor the WorldFrames which are received from the World Info
Processor are enriched with additional data that is calculated in Calculator instances.
The purpose of each of the calculators is explained in further detail in section 4.3.

12

4 Implementation of the AutoRef

The WorldFrame is then passed into the AutoRefEngine which itself feeds the frame
into the EventEngine for processing. The EventEngine detects events like goals or rule
infringements that occur on the field and returns them to the AutoRefEngine. The
AutoRef Engine knows an active as well as a passive mode. The passive mode can be
used if the game should be led by a human referee with passive support by the AutoRef.
The AutoRef will then merely log the detected events to the GameLog that is displayed
as part of the GUI. The active engine however serves as a partial replacement for the
human referee and actively reacts to the detected events by sending referee commands
to the referee box in order to alter the game state accordingly.

In the following sections each of the subcomponents of the AutoRef will be explained
in greater detail in the order in which they appear in the processing pipeline.

4.3 Calculators

Calculators are mostly stateless components that enrich the WorldFrame with additional
data which is calculated from the WorldFrame itself. They are set as the first step
in the processing pipeline because the calculated data is needed in several subsequent
components like the EventEngine or the AutoRefEngine.

Possible Goal Calculator

As part of its regular operation the AutoRef must be able to detect goals. The simplest
approach would be to simply award a goal whenever the ball is located inside the rect-
angle that constitutes a team’s goal. However, since the ball can also be chip kicked
over the goal the position itself does not provide a sufficient condition to award a goal.
For this reason, the Possible Goal Calculator uses a different approach to detect goals
and inform later components about a goal by setting the detected goal as value in the
WorldFrame. In order for it to detect a goal one of two sufficient conditions must be
fulfilled:

• The ball is located inside the goal and its velocity is equal to zero

• The ball changes its heading by at least αmin while being located inside the goal

If one of both conditions evaluates to true, the calculator stores the team color of
the goal as well as the current timestamp in each WorldFrame until the ball exits the

13

4 Implementation of the AutoRef

goal perimeter. The detection logic is implemented as a calculator to ensure that all
components which use this information are informed synchronously about a detected
goal.

Ball Left Field Calculator

The Ball Left Field Calculator tracks the ball and whenever the ball leaves the field it
calculates the position on the boundary line where the ball left the field.

The calculator keeps a history of the last ball positions. When the ball leaves the
field it uses the current position as well as the last position of the ball inside the field
to interpolate the intersection of field boundary and ball heading. This information is
stored as attribute in the WorldFrame and used by other components to determine what
action to take depending on whether the ball exited the field through the touch or the
goal line.

Game State History Calculator

The Game State History Calculator maintains a list which contains the last game states.
This information helps other components to react differently depending on which game
states the game was in before the current state.

Last Ball Contact Calculator

For several rule infringements, like Ball Out Of Play, it is necessary to determine the
robot that last touched the ball in order to correctly detect the infringements and derive
the proper next action for the AutoRef. For this purpose, the AutoRef features a Last
Ball Contact Calculator which determines the robot that last touched the ball and stores
its ID along with the timestamp at which the contact occurred in the WorldFrame.

To detect ball contacts the calculator monitors changes in the ball heading ~vb(t) between
two consecutive frames fi and fi+1 with time difference ∆t. It assumes that a contact
has occurred if the change is greater than a certain threshold αmin:

~vb(t)^~vb(t+ ∆t) > αmin

It then tries to find candidates in the vicinity of the position of the ball ~pb and picks

14

4 Implementation of the AutoRef

~pr1

~pr2

~pr3

Ball

d2

d3

d1

ϕ

~vb

−~vb

~pb

Figure 4.3: Selection of candidates

the most suited robot i with position ~pri
. It only considers robots that are positioned

“behind” the ball i.e. fulfill the following condition:

(~pri
− ~pb)^(−~vb) < 90°

Figure 4.3 outlines an exemplary situation with three robots. Robot 1 is not positioned
behind the ball (ϕ > 90°) and is therefore not considered as candidate.

As second criteria the robots must be positioned close enough to the imaginary line
~lb = ~pb + λ · ~vb:

distance(~pri
,~lb) < rbot

Of the robots 2 and 3 in figure 4.3 only robot 2 fulfills the second criteria. If more
than one robot fulfills all criteria then the algorithm selects the robot that is positioned
closest to the ball.

The proposed algorithm delivers good results in a simulation as well as during a regular
game. It does however detect false positives when the ball is chip kicked as the flight
curve follows an arc when projected as 2D vision data. The algorithm interprets this
arc as change in ball heading and detects false ball contacts for all robots that the ball
passes by.

15

4 Implementation of the AutoRef

4.4 Event Engine

The EventEngine is responsible for detecting events that occur during a game. These
events can either be rule infringements as the ones stated in chapter 2 or events like
a goal that demand a change of game state. The AutoRef decouples the detection of
different events in the game from the components that run the game to facilitate an
easier reuse. The event engine is used for both the active as well as the passive mode.
During regular operation the engine is continuously feed with WorldFrames and returns
a list of all events that it detected in each frame. The logic to detect one, or in some
cases, multiple different event types are encapsulated in one EventDetector component.
The EventEngine serves as container for all detector instances and processes each one
of them with every WorldFrame it receives.

In order to give an insight into the workings of the event engine the following sections
explain what an event is comprised of, outline how the detector instances are invoked
by the event engine, and finally illustrates how each of the detector components is
implemented.

4.4.1 Events

An event is a generic data type to describe a situation or incident that occurred on the
field. It contains the following attributes:

Attribute Optional Description
Type Required Type of the event like Goal or Ball Left Field
Responsible Team Required Team which was responsible for the event
Responsible Robot Optional Robot responsible for the event
Next Action Optional Action that should be taken to handle the event
Card Penalty Optional Card that should be shown to the responsible bot

Table 4.1: Attributes of an event

Each event is given a unique global type to distinguish it from other events and describe
the detected condition. Appendix A lists all possible event types. As second attribute
an event must always be assigned a team that was responsible for triggering it. For some
events it can make sense to also specify the exact robot that triggered it. In the case
of a Ball Left Field event the responsible robot would be the robot that last touched

16

4 Implementation of the AutoRef

the ball before it exited the field. For other events like the Bot Count event it does not
make sense to specify a robot. The Next Action attribute describes the action that the
AutoRef should take in case it accepts the event. A Ball Left Field event would specify
an indirect free kick as next action. The Card Penalty attribute optionally specifies a
yellow or red card that should be shown to the responsible robot if present. The logic
to detect each event type is encapsulated in multiple detector components.

The Next Action attribute of each event is modeled through another data type called
FollowUpAction. It specifies what action to take next and contains the following at-
tributes:

Attribute Optional Description
Action Type Required Type of the action like Kickoff or Indirect Free Kick
Team in Favor Required Team which will perform the action
New Ball Pos Optional Where to place the ball before initiating the action

Table 4.2: Attributes of a FollowUpAction

The new ball position is set as optional attribute as the ball position does not need to
be specified for some action types like the penalty kick or the kickoff.

4.4.2 Detector Processing

Each detector component is assigned one or multiple game states in which it is active
and is only processed when the game is in one of these states. This simplifies the
implementation of each detector component as it must not track the state of the game
itself. For example, the detector type which monitors the ball velocity for an infringement
does only need to be active in the Running state of the game. Additionally, all detector
components must implement a reset method that is invoked by the EventEngine when the
game transitions from a game state in which the detector component should be inactive
to one of its active game states. Upon invocation the detector component should discard
any state that it has stored. As third requirement each detector component is assigned
an ascending priority to define which detector should be processed first.

When the EventEngine receives a frame for processing, it first determines all detector
components which are active in the game state of the frame and sorts them by their
priority. It then invokes the reset method on all detector components that have become

17

4 Implementation of the AutoRef

active with the current frame. Finally, the frame is forwarded to each detector compo-
nent for processing. The component may optionally return an event that it detected in
the current frame. All detected events are stored and returned to the caller. The entire
process is outlined as pseudocode in listing 4.1.

1 processFrame (frame , lastFrame) :
2 d e t e c t o r s := getAct iveDetec to r s (frame . gameState)
3 s o r t B y P r i o r i t y (d e t e c t o r s)
4 events := empty l i s t
5 f o r d e t e c t o r in d e t e c t o r s :
6 i f not d e t e c t o r . i s A c t i v e I n (lastFrame . gameState) :
7 d e t e c t o r . r e s e t ()
8 r e s u l t := d e t e c t o r . p r o c e s s (frame)
9 i f r e s u l t e x i s t s :

10 events . append (r e s u l t)
11 r e turn events

Listing 4.1: Event Engine Loop

4.4.3 Implementation of the Detector Components

In the following sections each of the detector components is explained in greater detail
where required along with the difficulties associated with detecting each infringement.

Ball Left Field Detector

The Ball Left Field Detector component fires an event whenever the ball exits the field
while the game is in the Running state. It covers throw-ins, goal kicks, corner kicks as
well as the Icing rule. Figure 4.4 shows the chain of decisions that the detector makes
with every frame to determine the event that it emits. It uses the result of the Last Ball
Contact Calculator to determine which team should be granted the free kick. If the blue
team was the last team to make contact the yellow team will be awarded the free kick
and vice versa.

One problem that must be solved for all detector components is their inherent state-
lessness regarding the continuous emission of new events. In the case of the Ball Left
Field Detector this statelessness would cause it to continuously emit a new event for
every frame in which the ball is located outside the field. This problem is solved for each
detector component individually however they all use some kind of cool down mechanism
to prevent this behavior. The Ball Left Field Detector component for example emits a

18

4 Implementation of the AutoRef

Start
Ball inside
the field?

Ball exited over
touch line?

Yes
NOP

No

Throw-in
Yes

Last touched by
opponent in its

own half?

No: Ball exited over
the goal line

Icing
Yes

Goal kick
Corner kick

No

Figure 4.4: Chain of decisions for the Ball Left Field Detector

single event whenever the ball crosses the field boundary but does not report another
event until the ball has reentered the field.

Detecting when the ball has left the field perimeter is rather easy to accomplish. It is
however difficult to correctly determine which team last touched the ball. This informa-
tion is necessary to determine if the rule regarding Icing has been violated and which
team will be awarded the free kick. The Last Ball Contact Calculator can correctly
determine the robot which last touched the ball in most cases but does not work reliably
when the ball is chip kicked due to the reasons described in section 4.3.

Attacker to Defense Area Distance Detector

This detector component tries to find all robots of the attacking team which are located
too close to the defense area of the defending team during a free kick as described in
chapter 2.

19

4 Implementation of the AutoRef

To detect robots which violate this rule the detector triggers on the change of game
state from a an indirect kick or direct kick state to the Running state as at this point the
robot which performs the free kick has touched the ball and therefore taken the kick. It
then determines all robots which are located in a 200mm perimeter around the defense
area and returns an event for the first violator that it detects. The detection of violations
regarding this rule does not pose any greater difficulties as the position of each of the
bots can be determined directly from the vision frames returned by the vision system.

Attacker Touches Keeper Detector

The Attacker Touches Keeper Detector implements the corresponding rule infringement
described in chapter 2. It monitors the distance of all robots of one team to the goal-
keeper of the other team and fires an event if the distance drops below a certain threshold
while the goalkeeper is positioned inside its defense area. Violators are stored in a cool
down list along with the timestamp of the event. The detector does not report another
event for the same robot until the cool down timeout has expired in order to reduce the
noise caused by duplicate events.

Ball Velocity Detector

This detector component monitors the ball for a speed violation. If the ball velocity
exceeds a maximum threshold for multiple frames in a row the detector emits an event
for the robot that last touched the ball. The ball velocity in each frame is automatically
calculated by the world predictor. The detector triggers only once until the ball velocity
has dropped below the critical threshold.

The detector implementation is rather simple since the velocity is automatically calcu-
lated by the world predictor. It does however sometimes emit false positives if the ball
jumps between multiple locations due to inaccurate vision data as the world predictor
calculates an abnormally high velocity to match these jumps.

Bot Collision Detector

The official set of rules penalizes substantial contact between robots of opposing teams
but only gives a vague definition of the term itself (see chapter 2 for more information)

20

4 Implementation of the AutoRef

that is more suited for interpretation by a human referee than by an algorithm. Due
to the lack of a more precise definition this AutoRef uses a rather simple approach
which should be considered a first attempt at implementing an algorithm to detect the
required rule infringement. It is deemed in no way complete nor entirely correct. The
implementation is described in the following paragraphs.

For every possible pair of robots of both teams (bi, yj) ∈ Rb×Ry the detector calculates
the distance between them:

d = |~pbi
− ~pyj

|

If the distance is smaller than a certain threshold dmin the detector assumes that the
robots will collide. For the correct calculation of the crash velocity it is crucial that the
collision is detected before the physical impact occurs as the collision would falsify the
velocities of both robots.

To determine if the collision satisfies the requirements of a substantial contact the
detector then calculates the absolute impact velocity vc of both robots. This velocity
must exceed a certain maximum threshold vcmax for the contact to count as collision.
Figure 4.5 outlines such a scenario where robot bi with velocity ~vbi

is about to collide
with robot yj with velocity ~vyj

.

~pbi ~pyj

~vbi ~vyj

ϕ ϕ
ybi yyj

xbi xyj

Figure 4.5: Bot Collision Speed Calculation

In order to calculate the impact velocity both vectors are split into their perpendicular
components (xbi

, ybi
) for bi and (xyj

, yyj
) for yj. The impact velocity is then calculated

as:

21

4 Implementation of the AutoRef

vc = |xbi
− xyj

|+ (ybi
+ yyi

)

= | cos(ϕ) · |~vbi
| − cos(ϕ) · |~vyj

||+ (sin(ϕ) · |~vbi
|+ sin(ϕ) · |~vyj

|)

= cos(ϕ) · ||~vbi
| − |~vyj

||+ sin(ϕ) · (|~vbi
|+ |~vyj

|)

As second condition the difference in absolute robot velocity must be greater than a
certain threshold ∆vmin:

|~vbi
− ~vyj

| > ∆vmin

If both conditions evaluate to true, the Bot Collision Detector fires a collision event
and sets the robot with the higher velocity as responsible robot.

The algorithm described above has proven to correctly detect robot collisions in multiple
field tests. It is however difficult to correctly tune the parameters vcmax and ∆vmin as
there is no clear definition of when a contact between two robots qualifies as collision.

Bot In Defense Area Detector

This detector component covers the Multiple Defender rule as well as the rule regarding
the presence of attackers in the defense area of the defending team as the logic to
detect both infringements are similar. The detector triggers on the value of the last ball
contact field in the WorldFrame that is calculated by the Last Ball Contact Calculator.
Whenever the value changes it evaluates if the contact position of the robot lies inside
the defense area. The detector differentiates full and partial penetration of the defense
area as shown in figure 4.6 where rb constitutes the robot radius.

A robot is considered to be positioned fully inside the defense area if its center point is
located inside the red area as shown by robot a with position ~pa. A robot is considered
to be positioned partially inside the defense area if its center point is located inside the
yellow area but not inside the red area as shown by robot b with position ~pb.

The detector punishes each contact only once. After an event has been reported for a
robot the detector waits a certain cool down time before reporting another event for the
same robot in case two ball contacts are detected for the same robot in fast succession.

22

4 Implementation of the AutoRef

Partial

Full

~pb

~pa

rb

rb

Figure 4.6: Robots located fully (a) and partially (b) inside the defense area

The detector knows three different infringements that are listed in table 4.3.

Infringement Defense Area Position Punishment
Multiple Defender Partial Own Partial Yellow Card
Multiple Defender Full Own Full Penalty Kick
Attacker In Defense Area Opponent Partial/Full Indirect Free Kick

Table 4.3: Bot In Defense Area Punishments

The exact implementation as stated above reacts very sensitive to situations where a
robot partially enters the defense area by only a few millimeters. While the decision of
the detector is technically correct it unnecessarily interrupts the game and impairs the
viewing experience. For this reason, the detector implementation uses a slightly smaller
yellow margin in order to avoid too sensitive decisions.

Bot Count Detector

The Bot Count Detector ensures that the number of robots on the field matches the
maximum allowed robot count. During a regular game each team is allowed to play
with up to 6 robots. However, if a team is shown a yellow card the number of robots
must be reduced by 1 for a duration of 2 minutes. The number of active yellow cards is
published by the referee box along with the referee commands.

The Bot Count Detector continuously counts the number of robots on the field in every
frame and compares the result with the allowed number of robots. The allowed number

23

4 Implementation of the AutoRef

of robots is calculated by subtracting the number of active yellow cards from the default
number of 6 robots. In case the robot count for one team is higher than the maximum
allowed value the detector emits a single event. It does not report another event for the
same team until the difference between allowed and actual bot count has changed again.

Bot Stop Speed Detector

The Bot Stop Speed Detector component must ensure that no robot exceeds the speed
limit during game stoppage. For this reason, it continuously tracks the velocity of each
robot on the field as calculated by the WorldPredictor. A robot is considered to violate
the rule if it maintains a velocity greater than the speed limit for a certain amount
of time tmax (300ms in the implementation). Every robot is given tmax as quota q.
Whenever the velocity of a robot exceeds the speed limit in a given WorldFrame fi the
time delta between the current and the last frame ∆t = tfi

− tfi−1 is subtracted from the
robot’s quota q = q −∆t. However, if the velocity of a given robot does not exceed the
speed limit ∆t is added to its quota q = min{q + ∆t|tmax}. If the quota reaches 0 for a
certain robot an event is emitted and the robot is put on a cool down list. The detector
does not report another event for the same robot until its quota has been restored and
it has subsequently been taken off the cool down list.

The rule regarding the maximum velocity during game stoppage is not strictly enforced
by the human referee in general unless the robots of a team clearly and visibly disregard
the maximum velocity. Subsequently teams do not strictly abide by the rule and might
temporarily exceed the speed limit for a short amount of time. If the AutoRef were to
punish all infringements of this rule a team might be forced to remove all robots from
the field due to the large amount of yellow cards issued over a short period of time.
For this reason, the events emitted by this detector are currently not acted upon by the
active AutoRef engine and are merely logged to the Game Log. It remains to be shown
in future games if the detector will ever be actively used.

Defender To Free Kick Point Distance Detector

During a free kick or kick-off situation theDefender To Free Kick Point Distance Detector
monitors the direct vicinity around the ball position in order to issue an event if a robot
of the opponent team enters the circular area 500mm from the ball. This can in some

24

4 Implementation of the AutoRef

cases lead to an interrupted gameplay as some teams do not strictly follow this rule
and robots partially cross the circular area on their path without actually intending to
touch the ball. This behavior is normally not punished by a human referee unless a
robot actually touches the ball or impairs the robot taking the kick. For this reason, the
detector divides the area into an inner and an outer circle with a radius of 250mm and
500mm. A robot of the opponent team may linger in the outer circle for a total time of
3 seconds before an event is emitted. However, if a robot of the opponent team enters
the inner circle an event is reported right away.

Double Touch Detector

The official rules state that a robot may not touch the ball a second time after the free
kick has been taken and the ball has moved 50mm. As this very strict definition may
lead to an overly sensitive detector the implementation of the rule as described below
uses a slightly different approach to detect a double touch that is shown in figure 4.7.

Start

Robot touched
the ball

Free kick
is taken

Robot touched
the ball again

Robot moved
away from the

ball

Robot moved
150mm away
from the ball

Ball touched
by other robot

Ball touched
by other robot

Ball is touched
by robot again

No Double
Touch

Double
Touch

Figure 4.7: State machine of the Double Touch Detector

The detector triggers on the game state transition to Running and stores the ID of the

25

4 Implementation of the AutoRef

robot that last touched the ball in that frame as it considers that robot to have taken
the free kick. It then constantly monitors the distance between the robot and the ball
and assumes that the robot has separated from the ball if there is a measurable distance
of 150mm between both. If the robot then touches the ball a second time, an event is
emitted to signal a double touch. However, if a different robot comes in contact with
the ball the detector becomes inactive.

Dribbling Detector

The Dribbling Detector works in a similar fashion as the Double Touch Detector. It also
employs a state machine as shown in figure 4.8 to detect dribbling when the game is
running. Its initial transition is triggered by a change of the Last Ball Contact value
calculated by the Last Ball Contact Calculator. Whenever a new robot touches the ball
the detector stores the position of the contact and continuously evaluates the following
two conditions which must evaluate to true in order for the detector to signal a Dribbling
infringement.

1. Necessary condition: Robot remains in close contact to the ball

2. Sufficient condition: Robot travels 1000mm from the first contact position

The first condition must evaluate to true until the second condition is also true. The
robot is considered to stay in close contact to the ball as long as the distance between
both remains below a certain threshold dmin which is set to 100mm in the implementa-
tion. However, if the ball is touched by a different robot or the distance does not remain
below the threshold the detector is reset. The total travel distance for condition two is
determined by calculating the distance between the current position of the robot and
the stored position of the first ball contact. If the total travel distance is greater than
1000mm the detector emits a Dribbling event to signal the infringement. The detector
is then reset to its initial state.

Goal Detector

The Goal Detector is responsible for signaling the detection of valid or invalid goals.
A goal is considered invalid if it was shot directly from an indirect free kick [6, p. 28].
The actual goal detection mechanism is implemented in the Possible Goal Calculator as
explained in section 4.3. The detector uses the value of the Possible Goal field in the

26

4 Implementation of the AutoRef

Start

Ball touched
by robot

Ball is touched
by robot

Robot remains
close to the ball

No observable
distance > 50mm
between robot and
ball

Ball touched
by other robot

Robot travels
1m from first touch
position with ball

Dribbling

Robot separates
itself from the ball
Distance > 50mm

Figure 4.8: State machine of the Dribbling Detector

World Frame as trigger to emit a Goal event if the goal was valid or an Indirect Goal
event if the goal was not valid. Figure 4.9 outlines the different states of the detector.

In order for a goal to be considered an indirect goal the following two conditions must
apply:

1. The play sequence was started with an Indirect Free Kick

2. The ball has only been in contact with the robot that executed the free kick when
it enters the goal

To monitor if the ball was touched by a different robot the detector stores the ID of
the robot that executed the free kick and continuously compares it to the IDs of all
robots that touch the ball before it enters the goal. If at some point the ball is touched
by a robot with a different ID the detector sets an internal flag which indicates that
the necessary conditions do not apply anymore and any future goal must therefore be
valid. When the ball finally enters the goal it consults the internal flag and only emits
an Indirect Goal event if the flag is not set. However, if the flag is set the detector emits
a valid Goal event.

27

4 Implementation of the AutoRef

Start

Indirect still
hot

Indirect
Goal

No
Indirect

Ball touched
by other
robot

Play not started
through Indirect

Play started
through Indirect

Goal detected

Valid
Goal

Ball touched
by keeper

Goal detected

Figure 4.9: State machine of the Goal Detector

Kick Timeout Detector

The Kick Timeout Detector emits a Kick Timeout event if a team takes more than 10
seconds to execute a kick. It becomes active after the referee signals a Normal Start,
an Indirect Free Kick or a Direct Free Kick command and stores the timestamp of the
first frame that it receives after its reset. It uses the timestamp to calculate the absolute
amount of time spent by the team to perform the kick. If the team takes more than
10 seconds before it touches the ball the detector signals a timeout by emitting a Kick
Timeout event.

4.5 AutoRef Engine

The AutoRef engine contains the brain of the autonomous referee software. It knows two
different implementations to provide a passive as well as an active mode. In the following
two sections each of the two implementations is outline and explained in greater detail
where applicable.

4.5.1 Active AutoRef Engine

The active AutoRef engine is in its basic building blocks very similar to the event engine
but has been decoupled from it in order to better reuse the event engine for the passive

28

4 Implementation of the AutoRef

implementation. Its main purpose is to react to game events and send appropriate
commands to the referee box. In order to accomplish this goal the engine is divided
into multiple states that govern different parts of the game. The AutoRef states are
directly linked to the state of the game as calculated by the Game State Machine in a
one to many relationship. This means that one AutoRef state can be active in multiple
game states but not more than one AutoRef state can be active at the same time. If
the selection process for the current state was modeled by a function f : g → a where g
is the current game state and a represents the selected AutoRef state then f would be
surjective. This ensures that the AutoRef is solely dependent upon the game state and
can react to unexpected game state changes since the different parts are decoupled from
one another and store as minimal state as possible.

Game State
Machine

AutoRef
State

AutoRef Engine

RefBox
Cmd

Game
State

Command over Game Network

Figure 4.10: AutoRef feedback loop

The AutoRef changes its state by sending commands to the referee box. Figure 4.10
depicts this feedback loop between AutoRef and referee box. The current active AutoRef
state sends a command to the referee box and subsequently triggers a change of game
state.

Listing 4.2 outlines how the engine processes aWorldFrame. First the engine determines
the currently active AutoRef state from the game state. It then forwards the frame to
the event engine for processing and stores the events in a list. It is the responsibility
of the AutoRef state to handle the events that were detected. This way events can be
handled differently depending on the state the game is currently in.

1 processFrame (frame , lastFrame) :
2 autoRefState = getAct iveSta te (frame . gameState)
3 events = eventEngine . processFrame (frame , lastFrame)
4

5 autoRefState . handleGameEvents (events)
6 autoRefState . processFrame (frame , lastFrame)

Listing 4.2: AutoRef Engine loop

29

4 Implementation of the AutoRef

The AutoRef state handles the events by first selecting the event with the highest pri-
ority if the event engine detected more than one event. It then sends a STOP command
if the game is not already in the Stopped state and sets the FollowUpAction of the event
as current pending action. The AutoRef Stop state will then try to fulfill the pending
action by sending corresponding commands to the referee box in subsequent process
runs as soon as the game state has switched to Stop and it becomes active. The pending
action is reset when the game changes to Running.

In the following sections each of the different AutoRef states is described in greater
detail.

AutoRef Stop State

The Stop state performs all necessary actions to reinitiate a play sequence whenever the
game transitions into the Stopped state under the condition that a FollowUpAction is
set. Figure 4.11 depicts the checks the state performs to determine which command to
send.

The Stop state requires a set FollowUpAction to perform an action. If none is set it
simply idles until the game state changes due to an external referee command. If an
action is set it always waits a certain amount of time before performing an action to
give all robots time to settle after the game transitioned into the Stopped state. It then
determines the target position of the ball for the next action by consulting the New
Ball Pos field of the FollowUpAction and waits until the ball has come to a stop. If
the ball is not positioned correctly it either sends a Placement command (see [8] for
more information on the ball placement) or waits for the referee to place the ball at the
desired position. When the ball is placed correctly and all robots maintain the correct
distance from the ball it sends the referee command to initiate the next action.

AutoRef Prepare Kickoff State

The Prepare Kickoff state has the responsibility to send the Normal Start command to
initiate a kick-off when the robots as well as the ball are positioned correctly. Figure
4.12 depicts the different conditions the state evaluates before it sends the command.

Like the Stop state it also waits a certain amount of time (3.5 s in the implementation)
before performing any checks. It then checks if the ball is still placed on the center point

30

4 Implementation of the AutoRef

Start

Next
Action set?

Minimum
wait time

over?

Yes

No

Yes

Stop
Distance
Correct?

Yes

Exit

No

Send next
command

Is ball
placed?

Ball
Placement
attempted?

Send ball
placement

Yes

No No

Yes

No

Figure 4.11: Chain of decisions for AutoRef Stop State

and waits until all robots have taken up positions in their own half of the field before
sending the Normal Start command.

AutoRef Prepare Penalty State

The Prepare Penalty state works in a fashion very similar to the Prepare Kickoff state.
It also sends a Normal Start command as soon as all robots have cleared the penalty
kick area and a shooter has taken up position behind the ball.

AutoRef Ball Placement State

The Ball Placement state is responsible for monitoring the progress of a team during ball
placement. It becomes active whenever the Stop state issues a ball placement command

31

4 Implementation of the AutoRef

Start

Minimum
wait time

over?

Yes

Exit

No

Send Normal
Start

Ball is
placed?

Robots
on correct

side?

Yes YesNo

No

Figure 4.12: Chain of decisions for AutoRef Prepare Kickoff State

and the game transitions into the corresponding state. During ball placement the team
responsible for the placement is given a certain amount of time (15 s according to the
challenge) to place the ball. If the ball is placed correctly within the specified time
window the state issues a Stop command in order to transition back into the Stop state
to start the next action. If however the ball was not placed within the specified time, the
Ball Placement State issues another placement command for the other team to also give
it a chance to place the ball. If both teams fail at placing the ball the Ball Placement
state returns to the Stop state to wait for the human referee to place the ball.

4.5.2 Passive AutoRef Engine

The passive engine serves as support for the human referee. It does not attempt to
control the game but merely logs all events that are detected by the event engine to the
game log. The human referee can then review the detected events in the GUI in case he
missed a rule infringement or needs a second opinion.

32

5 Conclusion

The proposed implementation represents the first attempt at creating an autonomous
referee software for the Small Size League. The software has been tested in a simulation
environment as well as during regular games in passive and active mode.

In a simulation the AutoRef can control a game fully autonomously and makes accurate
decisions. This is useful for testing full gameplay of an AI software or performing fully
automated tests of single scenarios like a kick-off or a free kick where the referee software
verifies the correct execution.

Tests during real games yielded a mixed result. Contrary to a simulation environment
the vision data provided by the field camera system is not entirely accurate which can
have a significant impact on the accuracy of the ball and robot position prediction. Also,
chip kicks are difficult to detect and handle due to the inherent loss of information that
is caused by the 2D projection which can only be partially compensated for. Under these
circumstances some of the event detector classes fire false positives which can lead to
incorrect decisions. Also, some events simply cannot be properly detected from vision
data only and require a human referee to make a final decision.

However, if the unstable detector types are disabled and some incorrect decisions are
acceptable the AutoRef can also be used in active mode in conjunction with the ball
placement to run a fully autonomous game. In such a scenario it is crucial that the
AutoRef communicates its decisions to the spectators as well as the human referee. For
this reason, the league has proposed to introduce large display screens which can be used
by the AutoRef software to display information about the game as well as its decisions.

Future work on the AutoRef will need to focus on its stability in real world environ-
ments. The robustness of each of the detector types shall be verified using footage of
recorded SSL games from which different scenes shall be selected as benchmark for test
scenarios. Also the AutoRef will require a visualization panel to display its current state
as well as its decisions.

33

A Event Types

The following table lists all possible event types that can be emitted by the event engine.
For most of the event types a corresponding rule infringement is explained in chapter 2.
The state column specifies in which state the event can occur.

Event Type State Description
Ball Left Field Running The ball has exited the field and an indirect free

kick needs to be taken
Ball Speed Running The ball was kicked above the speed limit
Double Touch Running The ball was touched twice by the same robot dur-

ing a free kick scenario
Attacker to De-
fense Area

Running The attacking team did not respect the required
distance around the defense area of the defending
team

Bot Collision Running Two robots made substantial contact
Indirect Goal Running The ball was kicked directly into the goal after an

indirect free kick
Icing Running The ball was kicked over the midline and exited the

field over the touch line
Ball Dribbling Running The ball was dribbled for more than the maximum

dribbling distance
Bot Count Running The team exceeded the maximum number of robots

allowed on the field
Bot Stop Speed Stopped A robot violated the speed limit during game stop-

page
Attacker in De-
fense Area

Running A robot touched the ball while being located in the
defense area of the other team

34

A Event Types

Defender To Kick
Point Distance

Free kick /
kick-off

A robot of the defending team entered the off limits
area around the ball during a free kick

Kick Timeout Free kick /
kick-off

The team taking a kick (free kick, kick-off) took
more than the allowed time to kick the ball

Multiple De-
fender

Running A robot touched the ball while being located en-
tirely inside its own defense area

Multiple De-
fender Partially

Running A robot touched the ball while being located par-
tially inside its own defense area

Attacker Touch
Keeper

Running A robot touched the goal keeper of the opponent
team inside the defense area of the keeper

Goal Running The ball entered the goal

Table A.1: Event types

35

References

[1] www.robocup.org. Objective. url: http://www.robocup.org/about-robocup/
objective/ (visited on 05/05/2016).

[2] www.robocup.org. Small Size League. url: http://wiki.robocup.org/wiki/
Small_Size_League (visited on 05/06/2016).

[3] TIGERs Mannheim. AutoReferee Git Repository. url: http://gitlab.tigers-
mannheim.de/open-source/AutoReferee (visited on 06/10/2016).

[4] www.robocup.org. AutoRef Challenge 2014. url: http://wiki.robocup.org/
wiki/Small_Size_League/RoboCup_2014/Technical_Challenges (visited on
05/14/2016).

[5] www.robocup.org. AutoRef Challenge 2016. url: http://wiki.robocup.org/
wiki / Small _ Size _ League / RoboCup _ 2016 / Autoref _ Challenge (visited on
05/14/2016).

[6] Small Size League Technical Committee. Laws of the RoboCup Small Size League
2016. url: http://wiki.robocup.org/images/1/18/Small_Size_League_-
_Rules_2016.pdf (visited on 04/13/2016).

[7] Nicolai Ommer. Internal document. 2015.

[8] www.robocup.org. Autonomous Ball Placement Callenge 2016. url: http://wiki.
robocup.org/wiki/Small_Size_League/RoboCup_2016/Autonomous_Ball_
Placement (visited on 06/22/2016).

36

http://www.robocup.org/about-robocup/objective/
http://www.robocup.org/about-robocup/objective/
http://wiki.robocup.org/wiki/Small_Size_League
http://wiki.robocup.org/wiki/Small_Size_League
http://gitlab.tigers-mannheim.de/open-source/AutoReferee
http://gitlab.tigers-mannheim.de/open-source/AutoReferee
http://wiki.robocup.org/wiki/Small_Size_League/RoboCup_2014/Technical_Challenges
http://wiki.robocup.org/wiki/Small_Size_League/RoboCup_2014/Technical_Challenges
http://wiki.robocup.org/wiki/Small_Size_League/RoboCup_2016/Autoref_Challenge
http://wiki.robocup.org/wiki/Small_Size_League/RoboCup_2016/Autoref_Challenge
http://wiki.robocup.org/images/1/18/Small_Size_League_-_Rules_2016.pdf
http://wiki.robocup.org/images/1/18/Small_Size_League_-_Rules_2016.pdf
http://wiki.robocup.org/wiki/Small_Size_League/RoboCup_2016/Autonomous_Ball_Placement
http://wiki.robocup.org/wiki/Small_Size_League/RoboCup_2016/Autonomous_Ball_Placement
http://wiki.robocup.org/wiki/Small_Size_League/RoboCup_2016/Autonomous_Ball_Placement

	List of Figures
	List of Tables
	List of Abbreviations
	Introduction
	RoboCup
	Small Size League
	TIGERs Mannheim
	AutoRef Source Code

	Motivation
	Technical Background
	Game infrastructure
	Vision System
	Referee
	Summary

	Implementation of the AutoRef
	TIGERs AI software
	Overall structure
	Calculators
	Event Engine
	Events
	Detector Processing
	Implementation of the Detector Components

	AutoRef Engine
	Active AutoRef Engine
	Passive AutoRef Engine

	Conclusion
	Appendices
	Event Types
	References

