
Tigers Mannheim
(Team Interacting and Game Evolving Robots)

Team Description for RoboCup 2011

Bernhard Perun1, Andre Ryll1, Gero Leinemann1, Peter Birkenkampf1,
Christian König1, Gunther Berthold1, Stefan Scheidel2

1 Department of Information Technology
2 Department of Mechanical Engineering

DHBW Mannheim, Coblitzallee 1-9, 68163 Mannheim, Germany
management@tigers-mannheim.de / www.tigers-mannheim.de

Abstract. This paper presents a brief technical overview of the main systems of
Tigers Mannheim, a Small Size League (SSL) Team intending to participate in
RoboCup 2011 in Istanbul. First there is a description of our hardware system
followed by our software modules. Furthermore an outlook displays the
upcoming goals of our team.

1 Introduction

Tigers (Team Interacting and Game Evolving Robots) Mannheim is a team of
students of the Cooperative State University Baden-Wuerttemberg Mannheim,
intending to participate for the first time in the Small Size League (SSL) at RoboCup
2011 in Istanbul. After two years of development we are finally able to participate
with other teams in this international tournament.

Due to the fact that we decided to publish all our available source code and
documentation of our system after RoboCup 2011, this paper should give an overview
of our system only. Everyone who is interested in special parts of our soft- or
hardware may freely download it from our website after the tournament. We believe
that the most benefit is given to the community when all parts of our system can be
accessed by everyone who is interested in.
This paper is divided into three sections. First the hardware is described. One may
note that our mechanical and electrical designs are inspired by a lot of other teams. It
would have been more difficult to develop our hardware system without the helpful
community. Many thanks for that. In the next section, an overview over the software -
our main control software and our simulator - is given. At last there is an outlook on
what we will be able to finish until RoboCup 2011 and also on some long term goals
for the next years.

2 Hardware

2.1 Mechanical System

Drive:
The omnidirectional drive of the robot consists of four wheels with fifteen transverse
rollers (assembly of aluminum “rim” and a nitrile rubber “tyre”) that are driven by
one Maxon 30W EC-drive each. Torque is converted by steel gearwheels with a gear
ratio of about 3.33 (Figure 1, (1)). Thus the drive is optimized for high acceleration
(top speed is reached in less than one second even if acceleration starts while the
robot stands still) and little residual heat build-up inside the motors. Nevertheless, the
robot achieves a top speed of approximately 3 m/s when driving forward.
An optical encoder is attached to each wheel's shaft to detect the twisting angle of the
wheel with high precisions. In order to be able to mount the encoder at the end of the
shaft, the wheels are fixed by positive connection to the shaft and the shaft itself is
mounted in dry lubricated friction bearings in a specially designed bearing block.

Kicking Device:
Our Kicking Device consists of two parts: the straight kicker (Figure 1, (2)) for
kicking the ball straight forward and the chip kicker (Figure 1, (3)) for lobbing the
ball. Both are designed as electromagnetic actuators for fast and powerful shots.
The dribbling roller (Figure 1, (4)) is covered by a silicone layer optimized for high
friction and thus makes driving backwards, without losing the ball, possible. The
dribbling shaft is driven by a Maxon 15 W EC-drive and a gear drive with a gear ratio
of 2.

Case:
The outer Case of the robot is made of polycarbonate. This material offers an
elongation at break three times higher than standard Perspex (polymethyl
methacrylate). Thus even high impacts can not damage the housing.
Moreover, the materials density is less than half of the aluminum's and thereby it
reduces the total weight of the robot.

Measurements:

 External diameter: 180,00 mm
 Height: 148,00 mm
 Maximum ball coverage: 15,29 %

Figure 1: CAD-design of our robot

2.2 Electrical Design

The electronics of our robot consists of three distributed boards, each of them serving
a special purpose. All boards are self-designed to fit the special need of the SSL
requirements. Furthermore all parts are still large enough to be soldered by hand.
The most important board is the mainboard, a 140x120mm 4-layer PCB which is
shown in Figure 2. Its main processor is a Cortex-M3 32-bit microcontroller from
STmicroelectronics (STM32F103ZE) clocked with 72 Mhz. The processor is capable
of controlling all five motors, reading the encoders and managing wireless
communication. Due to the heavy usage of hardware interrupts, the motors can be
controlled with a PWM frequency of approximately 16 kHz without significant
impact of the other tasks’ performance. To manage various tasks the FreeRTOS
(http://www.freertos.org) real-time operating system is used. To communicate with
the main control computer and to receive commands, an embedded DECT module
from “Höft & Wessel” (HW86012) is mounted onto the mainboard. The module uses
a frequency of 1.9 Ghz and transfers raw ethernet frames to the Cortex. An UDP/IP
stack then decodes the commands. The mainboard is completed by two ATmega
microcontrollers (8-bit) from ATMEL, which act as port expanders and AD
converters. For the communication between the MCUs a SPI bus is used.

Figure 2: The mainboard of our robots

To control the kicker, a separate board is used which also uses the SPI bus to
communicate with the mainboard. Different from most other teams, which use a step-
up converter to charge the capacitors, our system uses a flyback converter. Its most
important part is a line output transformer, converting the low battery voltage to the
needed, higher voltage. The kicker board is designed to be safely used with capacitor
voltages up to 400 V. Together with four 470 uF capacitors this system can store
energy of up to 150 J. To control the energy flow to the kicking solenoid, high-power
IGBTs with mounted heatsinks are used. The complete board is controlled by an
ATmega microcontroller, which uses built-in PWM outputs to control the charge and
discharge transistors. Furthermore it monitors the capacitor voltage and heatsink
temperatures. The flyback converter circuit, together with the separate controller, can
charge the capacitors to full level in under 10 s. With an optimized discharge control
the kicker speed reaches the league limit of 10 m/s.
The last daughter board is mounted above the dribbling bar and controls four IR
sender-receiver pairs. One of these pairs acts as a lighting barrier to detect a ball in
front of the robot. The other three pairs can be used to check if the ball is correctly
centered in front of the robot. As the other board, this board also uses a dedicated
ATmega and communicates via SPI with the mainboard.
All in all, the electronics consist of one Cortex-M3 at 72 Mhz and four ATmega168 at
12 Mhz. Additionally to the already mentioned features, the mainboard also has two
accelerometers for motion detection, a buzzer to signal fatal problems, motor current
monitoring circuitry, an RS-232 interface, microSD card slot and a full-speed USB
client port.
To power the robot, two Lithium-Polymer batteries are connected in series to supply a
nominal voltage of 14.8 V. With a charge of 2400 mAh the robot can run at least a
whole match of 20 min without the need to change batteries.

3 Software

3.1 Overview

An important decision we made at the beginning of our project was to write all
software, not running on the robot, using the JAVA programming language. Due to
the simple structure and its compatibility, it is easier to work with within a big
development team, compared to other programming languages. At the moment there
are no major performance losses or other disadvantages compared to C++, referred to
the SSL environment.
Our software system consists mainly of two programs: the simulator “Tigers Cage
Simulator” and the main control software “Sumatra”. The simulator has been
programmed for testing our Artificial Intelligence (AI) in a virtual environment. This
part is described in section 3.7 in more detail.
Sumatra interacts directly with the SSL environment. The software is responsible for
getting the current image-data from SSL-vision, reacting to the newest referee
instructions, calculating the best strategy for the next interactions for the robots and
sending the resulting commands to the robots. Of course, Sumatra can also interact
with our Simulator, so no real environment is needed.
Sumatra is internally divided into seven sub-modules which are described in section
3.2 – 3.6. To handle this sub-modules a module system called “Moduli”
(http://moduli.sourceforge.net) is used. Moduli is a self-programmed, very fast
module system for JAVA which is designed to serve our needs exactly. In Sumatra it
functions as model in our MVP[8]-architecture.
In Figure 3 there is an overview concerning the SSL environment and the internal
structure of Sumatra.

Figure 3: Sumatra Architecture and its connection to the external environment

Sumatra is a JAVA 6 program which runs on a usual JAVA Sun JVM. The GUI-
system (Figure 4) is build with the external Docking Window framework “InfoNode
Docking Window” (http://www.infonode.net/index.html?idw).

Figure 4: The main-view of Sumatra

3.2 Module “Botmanager”

The Botmanager is the most low-level module in the stack to communicate with the
robots. It manages an inventory of all available robots and controls the connection and
disconnection procedures. The commands, which are sent to the robots, are the most
low-level one in our software, such as “setVelocityX/Y” or “armStraightKicker”.
Furthermore it stores all parameters for each robot and ensures that these are set as
soon as a robot is connected. Besides the obvious management of robots, this module
also acts as a converter between the internal Java commands and the UDP packets
sent to the robots. To optimize bandwidth usage, the Botmanager may wait for
several commands and group them before sending them to the robots. This method
reduces protocol overhead. To ensure smooth control of the robots, a maximum wait
time for the Botmanager to collect commands can be configured and is usually set
around 20 ms.
A planned addition to the Botmanager is to collect commands to all robots
simultaneously, group them in a large command and send them via multicast. This
should further reduce protocol overhead and thus the time to process commands on
the robot.

3.3 Module “Worldpredictor”

“Sumatra” has to be aware of the current position, orientation and motion vector to
successfully control a robot.
The position of the objects on the field is provided by the standardized image
recognition software SSL-vision [1]. This program processes each frame of each
camera separately and sends position data of identified objects via UDP to the team-
servers. Henceforth, these results are referred to as CamFrames. The position data is
noisy since, due to real-time processing, the resolution of the cameras is limited and
the localization algorithm is quite unstable on changing light conditions. Furthermore,
received packets contain only information about the past of the game because of the
processing and transmission time. In addition, received CamFrames do not have to be
in a specific or correct order and show only part of the field (caused by the lens
coverage of one camera).
The Worldpredictor module receives and processes this information.
Therefore it merges the information of different CamFrames and controls the adding
and removing of objects to the field. In addition, it is designed to process the
CamFrames in correct order, filter out noise of the data passed by SSL-vision and
calculate the current state of the game by predictions based on the CamFrame-state.
The result is a WorldFrame, describing the current state of all objects on the whole
field.
We assume that there will be only few false positive robot observations delivered by
SSL-vision. That is why we detect objects added to the field simply by counting the
number of observations in a specific period of time. If we have multiple observations
of a so far unknown object in a couple of CamFrames, the object will be added to the
WorldFrame. The other way around, known objects are removed if the last
observation it appeared in is too old. Since we believe that the removing and adding
of objects are no time-critical actions, this proceeding seems sufficient to us.
We use an Extended Kalman Filter (EKF) [2] for filtering out measurement noise and
predicting the current state of known robots and balls on the field. The performance of
our filter was improved by implementing a collision model, which reinitializes the
filter when two objects are likely to collide [3], and improbability filtering, which
allows us to ignore unlikely observations [4].
The EKF uses different velocity-based motion models [5] for the objects on the field.
Due to the absence of other information sources, the ball’s motion model is simply
based on the information delivered by the CamFrames. Due to the linear uniformly
accelerated nature of its movement, we get quite good results nevertheless. In
contrast, a robot’s motion is indeterminable by using CamFrames only. Because of
that, we include the robot’s control commands we get from the Botmanager module
into the motion model. This merging of information of different sources heavily
improved the performance of the EKF compared to predictions based on CamFrames
only. The control commands of the enemy’s robots are estimated by interpolating
between the last measurements. Since nearly all robots in the SSL seem to use the
same omnidirectional approach with similar motion behaviour, these information are
passed to the same motion model we use for our own robots. Nevertheless it is
possible to take different robot performance into account by tuning parameters of the
motion model, such as “Maximum Acceleration” or “Approximated PID slop”.

3.4 Module “Skillsystem”

As the commands given to a robot are very low level, they are not very suitable to be
used by the highest module in the processing stack, the AI. The AI usually has
commands like “MoveTo position X,Y”. This command requires additional
knowledge of the environment and the current robot position. As we did not want to
enlarge the Botmanager with this additional processing, the Skillsystem was added as
a second level of abstraction.
The mentioned command of “MoveToXY” is implemented as a Skill. This facilitates
the work of the AI and also allows reusing code. The Skillsystem gathers information
about the environment from the Worldpredictor and provides it to the Skills. The
Skills themselves take this information to generate one or more robot commands. The
commands are then transmitted to the Botmanager which takes care of the
transmission to the robots, so e.g. a “MoveToXY” skill can generate
“SetVelocityX/Y” commands.
To generate a chain of actions, skills are put into an internal queue. Each robot has its
own queue. The Skillsystem takes the first skill of the queue and starts processing it. A
Skill is usually run multiple times until it signals it is done. The execution period can
be chosen for each skill individually. After a skill is completed, the Skillsystem
processes the next skill in queue. This way a chain of actions can be constructed.
Sometimes multiple skills need to be executed in parallel for a single robot. To solve
this issue so called combined Skills were introduced. A combined Skill can be
constructed from multiple already existing Skills. So the code already written is used
to build more complex skills. As combined skills can also be made of other combined
Skills, this method can become arbitrarily complex.

3.5 Module “Artificial Intelligence”

Our AI is similar to Skuba’s approach in 2009 [6]. Only the structure and the meaning
of some objects were partly adapted to our environment. So the module is divided
into sub modules, which are supervised by an instance called Agent. This structure is
shown in Figure 5. To understand the structure, it is necessary to know about the
internally used data structures. These are AIInfoFrame, Play, Role and Condition.
The AIInfoFrame is a data container holding all relevant information for the AI
module. It is created by the Agent and passed to the sub modules.
A Play defines what the overall-plan for the next seconds is, e.g. an indirect shot. It
contains a set of Roles, not necessarily a Role for every robot, since there can be more
than one Play active at a time. A Role is a specific task within a Play and is mapped
to our robots 1:1. There are two Roles in the mentioned example, one that passes and
one that shoots. A Role is defined by its Conditions. Such a Condition may be a
“LookAt condition”, meaning that the owner of the Role has to aim at a specific point,
or “Destination condition”, defining a destination for the owner. Each Role tries to
fulfill its set of Conditions as good as possible.

The Agent receives the WorldFrame of the Worldpredictor module, creates – as
mentioned above – a new AIInfoFrame and passes it to the first sub module. Each sub
module adds some information and returns the AIInfoFrame to the Agent, before the
Agent passes it to the next sub module.
The naming of these sub modules follows the ancient Greek mythology. These sub
modules – in the order of acting – are:

 Methis, the Pre-Calculator. Methis analyzes the current situation on the
field. Exemplary retrieved information: “which team is in possession of the
ball” and “does any opponent robot has a clear line of fire”

 Athena, the Play-Finder. Based on the information retrieved by Methis,
Athena chooses between a given set of Plays. As mentioned above, there can
be more than one Play simultaneously, e.g. one offense and one defense
Play.

 Lachesis, the Role-Assigner. Lachesis maps the robots to the Roles based on
criteria, e.g. the Euclidian distance to designated positions or the current
motion vector.

 Ares, the Role-Executor. Ares calculates the necessary actions of the Roles
to fulfill their Conditions. Also, the Skills (see 3.4) are created at this point.

 Sisyphus, the Path-Planner. If at least one of the Skills created in Ares
contains motion aspects, Sisyphus calculates a path to the target, avoiding all
obstacles. Here the very common pathfinding approach in SSL “Extended
Rapidly-Exploring Random Trees with Dynamic Safety Search” [7] was our
algorithm of choice.

Figure 5: Structure of the module “Artificial Intelligence”

3.6 Other modules

Besides the core, there are also some smaller modules. The cam-module organizes the
data transfer with SSL-vision, builds up a message which is readable for our software
and forwards this message to all modules which need this kind of information. The
Referee-module does the same with the data received of the external referee software.
Furthermore, the Robot Control Server is responsible for the communication with the
Robot Control Utility (RCU) clients. The RCU can be used by a human user to
control a robot manually. The input interface can be a GamePad, a Joystick or a usual
keyboard which are handled by the JAVA library JInput (http://jinput.dev.java.net). A
RCU communicates through TCP/IP with the server module, so that different RCUs
can be used from multiple computers within a network.

3.7 Tigers Cage Simulator

Besides our competition software described above we also created a software
environment for the effective testing and evaluation of this system: our “Tigers Cage
Simulator”. Thereby “Cage” means “Computational augmented Gaming
environment”.
When we started developing our control software we were confronted with different
problems:

 the lack of any test-hardware (at the beginning)
 a team spread out all over Germany most of the year
 the need for immediate feedback during the software development process

This strong necessity for some kind of substitution for the hardware was the reason
for us to write our own simulation software suiting our needs.
From the beginning, the simulator was planned to act completely transparent for the
control software. It uses and implements exactly the same protocols and interfaces
which are provided by SSL-vision, the Referee-Box and our robots. The program
should allow us to completely simulate a RoboCup SSL match to such an extent, that
the system behaves like the real environment.
It is designed to provide

 different modes of movement-simulation,
 noise generation for the camera-output
 several possibilities to influence the physical simulation from the outside
 3D visualization of the match
 an interface for displaying additional user-data (from the control-software

etc.)
 an interface which allows the time- and event-based automation of user-

defined actions (creation of referee-signals, setup of test-scenarios, etc)
 a plugin system which allows the exchange of some parts of the simulator

during runtime
To fulfill all these requirements, the software makes heavy use of existing technology.
Written in Java, its core is the game development framework jMonkeyEngine
(http://www.jmonkeyengine.com). The most important features for our purpose are
the physical simulation by wrapping the Open Dynamics Engine

(http://www.ode.org), scene-graph based 3D visualization and interaction-handling.
The protocol for displaying user-data during the simulation is created with Google’s
protobuf framework (http://code.google.com/p/protobuf) and the storage of properties
relies on the XML serialization features of the Eclipse Modelling Framework
(http://www.eclipse.org/modeling/emf).
Figure 6 gives an impression of how a simulated SSL match looks like.

Figure 6: Visualization of a SSL game by the Tigers Cage Simulator

With the help of the simulator, we successfully established a software-in-the-loop-
process in our development cycle. Thus not only the high-level AI-developers get
assisted in developing their algorithms, but we are also able to specifically test several
modules of our control-software like the Worldpredictor or the Skillsystem.

4 Prospect

Our qualification video features the system at the version of January 2011. Until July
2011 we will do a lot of improvements. The biggest changes will happen in our
electrical design and our AI module. For instance, our shooting-system will be tuned
so that we can shoot with 10 m/s. Furthermore we will ensure that our robots are able
to react to every possible situation of a common SSL game and improve the precision
of the interactions of our robots.

After the tournament in Istanbul all available documentations and source codes will
be published on our website, so that other teams can take advantage of our work.
Due to the fact that a lot of members of our current team will graduate this year, a
new team (which already exists) will take over this project. Besides the “usual” SSL
work, they also will take a look on an autonomous referee robot for the SSL.

References

1. Zickler, S., Laue, T., Birbach, O., Wongphati, M., Veloso, M.: SSL-vision:
The shared vision system for the RoboCup Small Size League. In Baltes, J.,
Lagoudakis, M.G., Naruse, T., Shiry, S., eds.: RoboCup 2009: Robot Soccer
World Cup XIII. Volume 5949 of Lecture Notes in Artificial Intelligence.,
Springer, Berlin (2010)

2. Welch, G., Bishop, G.: An introduction to the Kalman filter. Technical
Report TR 95-041, University of North Carolina, Department of Computer
Science (1995)

3. Sheng, Y., Wu, Y., Wang, W., Guo, C.: Motion Prediction in a high-speed,
dynamic environment. http://www.cs.cmu.edu/~shengyu/download/
motion_prediction.pdf [Online, accessed 27.02.2011]

4. Browning, B., Bowling, M., Veloso, M.: Improbability Filtering for
Rejecting False Positives. In Proceedings of 2002 IEEE International
Conference on Robotics and Automation, Washington, DC (2002)

5. Thrun, S., Burgard, W., Fox, D.: Probabilistic Robotics. The MIT Press,
Camebridge, MA (2006) 121-132

6. Srisabye, Jirat: Skuba Extended Team Description. http://small-
size.informatik.uni-bremen.de/tdp/etdp2009/small_skuba.pdf [Online,
accessed 27.02.2011]

7. Bruce, James: Real-Time Motion Planning and Safe Navigation Dynamic
Multi-Robot Environments. http://reports-archive.adm.cs.cmu.edu/anon/
2006/CMU-CS-06-181.pdf. [Online, accessed 27.02.2011]

8. Fowler, Martin: Model-View-Presenter (MVP) - http://www.martinfowler
.com/eaaDev/uiArchs.html [Online, accessed 27.02.2011]

