
TIGERs Mannheim
(Team Interactive and Game Evolving Robots)

Extended Team Description for RoboCup 2023

Michael Ratzel, Mark Geiger, André Ryll

Department of Information Technology
Baden-Württemberg Cooperative State University,

Coblitzallee 1-9, 68163 Mannheim, Germany
info@tigers-mannheim.de

https://tigers-mannheim.de

Abstract. This paper presents details of the 2D trajectory generation
algorithm of the TIGERs Mannheim, a Small Size League (SSL) team
intending to participate in RoboCup 2023 in Bordeaux, France. This
year, the ETDP will focus on extending the trajectory generation to
allow for better goal-shot intercepts of the goalkeeper. The current time-
optimal second-order BangBang trajectories include a complete stop at
the intercept destination, wasting valuable time. This is overcome by
generating virtual destinations for the robot, that overshoot the intercept
point and avoid the preliminary braking, while ensuring the keeper will
reach the intercept point at the same time as the ball.

1 Introduction

This paper presents an extension to the current system for generating 2D tra-
jectories that improves the goalkeeper performance when catching shots on the
goal. The currently generated second-order trajectories are time-optimal with
constant acceleration and include a full stop to reach zero velocity at the spec-
ified destination position. However, this full stop wastes valuable time when
intercepting goal kicks, and as long as the goalie and the ball are at the inter-
ception point at the same time, it is irrelevant that the goalie comes to a full
stop at the intersection point in a time-optimal manner.

Since the TIGERs robots are controlled only by specifying the final destina-
tion at which the robot should stop, we present an extension algorithm that can
provide virtual destination positions such that the actual destination is reached
at a given time by an actual trajectory created to the virtual destination. Since
this problem is overdetermined, as the robot is not always able to reach the
destination in the given time, a best possible virtual position is generated that
brings the robot as close as possible to the destination in the given time.

2 M. Ratzel et al.

2 Related Work: Untimed Trajectories

The RoboCup Small Size League (SSL) is a fast paced robot soccer league, and
due to the high power of the motors compared to size and weight, the omni-
directional drive system of the robots is mainly limited by friction. Therefore,
the Cornell Big Red team has presented an approach that generates second-
order time-optimal trajectories with constant acceleration and a complete stop
at a given target destination [1]. The current implementation is based on this
approach and is discussed in more detail in section 3.

The work of Hove et al. [2] presents a problem similar to intercepting a
goal shot: Catching a ball with a robotic arm. However, they must impose more
stringent requirements on the trajectory of the arm’s end effector as they attempt
to match the position, velocity, and acceleration of the ball at the interception
point to reduce the risk of the ball bouncing off the arm. For future offensive
applications, such as receiving a pass with a moving robot, these requirements
may also be imposed, but for simply intercepting a shot on the goal, whether
the ball bounces off the goalkeeper is irrelevant, and trying to match velocity
and acceleration wastes valuable interception time.

In the “Mousebuster” work, an attempt is made to catch a mouse with a
robotic arm. Here, the end effector of the robot does not have to match the
velocity of the mouse, so the problem is closer; instead, an attempt is made to
catch the mouse by placing a cup over it on the floor. Therefore, the velocity
of the robot at the point of contact must be 0 to avoid hitting the ground.
As mentioned earlier, this full stop again wastes valuable time. Furthermore,
the trajectory presented in the paper is a third-order jerk-limited trajectory.
The TIGERs use only second-order acceleration-limited trajectories because the
robots are built to withstand very high jerks in collisions with other robots, and
the motors are powerful enough to generate the large acceleration jumps. More
details on the TIGERs robots can be found in the team’s latest publications
[3–5].

3 Current Approach: Untimed Trajectories

As mentioned earlier, our current approach for time-optimal 2D BangBang tra-
jectories is based on the approach presented by Cornell Big Red [6, 1]. It consists
of two 1D trajectories for the two orthogonal axes x and y in the plane of the
field. Each 1D trajectory consists of up to 3 phases with constant acceleration.
An acceleration phase, an optional plateau phase with maximum velocity and an
second acceleration phase. Each phase is described by the following equations of
motion, with the position s(t), the initial position of the phase s0, the velocity
v(t), the initial velocity of the phase v0 and the constant acceleration a is either

TIGERs Extended Team Description for RoboCup 2023 3

zero or the positive or negative limit ±amax.

s(t) = s0 + v0t + 1
2at2

v(t) = v0 + at

a = const

(1)

A 2D trajectory is shown in fig. 1 that starts at S0 = (0 m, 0 m)T with an

Fig. 1: 2D-Trajectory without Ball Interception Improvements

initial velocity of V0 = (0 m s−1, 1 m s−1)T , ends at the given destination St =
(1.5 m, 0.5 m)T , and has a maximum velocity of vmax = 2 m s−1 and a maximum
acceleration of amax = 3 m s−2. The bottom two rows of the figure show the
position, velocity, and acceleration of the 1D trajectories of the x and y axes,
with the target destination marked as a horizontal red line in the position graph.
The 1D graphs have marked time stamps: the transition times of the phases

4 M. Ratzel et al.

t0, t1, t2[, t3]. These are used in the following to assign variables to specific time
points or time intervals. A position, velocity, or acceleration with a single index
specifies its value at the exact time stamp, e.g., si = s(ti) is the position exactly
at ti. Variables with two indices describe the difference, e.g., si,j = s(tj) − s(ti),
or ti,j = tj − ti.

The velocity profile of the x-axis in the middle clearly shows all three possi-
ble phases: t0,1 the acceleration phase one, t1,2 constant velocity phase and t2,3
acceleration phase two. Overall, the velocity resembles a trapezoidal shape. The
y axis has only the two acceleration phases t0,1 and t1,2, which resembles a tri-
angular velocity shape. The constant velocity phase is omitted for the triangular
shape because the distance on the y-axis is not long enough to accelerate to vmax
and decelerate back to 0.

In order to enforce the maximum velocity and acceleration that the robot’s
hardware can achieve, we need to solve the optimization problem of what fraction
of the total maximum velocity and acceleration can be assigned to each 1D
trajectory. We can formulate the problem as finding the optimal angle α and
computing from it the respective velocity and acceleration maxima using the
following equations:

vmax,x = vmax cos α

amax,x = amax cos α

vmax,y = vmax sin α

amax,y = amax sin α
x

y

vmax
amax

α

vmax,y

amax,y

v
m

ax
,x

a
m

ax
,x

(2)

The maxima are used to compute the total time ttotal of the 1D trajectories. In
the upper right corner of fig. 1 we see the total times of the x (dark blue) and
y (light blue) trajectories in relation to α, and the absolute difference between
these times in orange. For a time-optimal 2D trajectory, the difference must be
0. This is indicated by the green vertical line. The dashed red line marks the
α∗ chosen by the implemented optimization strategy. Since the absolute time
difference is mostly convex (see section 5.2), we use a binary search approach.

4 Overshooting Trajectories

The extension now adds an extra input for the trajectories, not only the 2D
destination St, but also a wanted arrival time, the target time tt is given. It is
marked in the 1D graphs as a vertical red line, while the 2D graph marks only
the timed target position (st,x, st,y, tt)T with a red cross, as shown in fig. 2.

The new output of the extension are virtual destinations S∗
t , so s3 of the

x and y graphs in fig. 2. This virtual position S∗
t = (s3,x, s3,y)T = (s∗

t,x, s∗
t,y)T

is then sent to the robot as a normal target destination, and the robot will

TIGERs Extended Team Description for RoboCup 2023 5

Fig. 2: 2D-Trajectory with Ball Interception Improvements

drive there with a trajectory generated by the current approach, as the virtual
position is created such that the robot passes the target destination at the target
time. The virtual destinations can be placed behind the actual destination St

to avoid the unnecessary breaking before reaching St, or exactly at St if tt is
large enough to allow for a full stop. We call trajectories where the robot drives
further than the actually wanted destination overshooting trajectories, and they
can be either a forced overshoot: The robot is too fast and passes the destination
before the target time, so it overshoots and has to recover. Or they can overshoot
deliberately, so that the robot heads for a virtual destination in order to reach
the actual destination just in time.

For the generation of 2D virtual positions, the extension reuses the same
α optimization strategy used in the existing approach, but replaces how 1D
trajectories are generated. The new 1D trajectories to the virtual destination
are generated, such that they get as close as possible to the target destination
at the target time point. The total time t∗

total and final virtual position s∗
t of the

trajectory are then used in the α optimization generation to combine two 1D

6 M. Ratzel et al.

trajectories to one 2D one. If the approach is successful and tt is high enough
to allow the robot to hit the target destination in time, the 1D position graph
will intersect with both the target time tt and the target position st at the same
point, and the 2D position graph intersects the red cross.

A decision tree summarizing the proposed 1D algorithm is shown in fig. 3.
For simplicity, the only case shown is a 1D trajectory from s0 = 0 to st ≥ 0,
since all other cases can be constructed simply by offsetting st with −s0, or
multiplying st by −1. The eight decisions d1 to d8, as well as the eight resulting
velocity profiles, are shown in detail below.

Start

st < sbr
tslow < tt

st < s0,1

tt < t2

t3 < tt

t1,2 ≥ 0

t2,t < t2,3
t1,2 ≥ 0

vmax < v0

tt < t0,1

t2 < tt

OvershootRecover

TrapSlow

TrapEarly

TrapDirect

StraightSlow

TriaSlow

TriaEarlyTriaDirect

yn

n y

n y

n y

n y

n y

n y

n y

d1

d2

d3

d4

d5

d6

d7

d8d8

Decision i

di

Velocity Profile

Fig. 3: Virtual Destination Decision Tree

d1: Forced Overshoot and Recovery handling As mentioned at the beginning
of the section, not all overshoots are desirable. If the robot is already close to
the intercept point and has a high velocity, it is possible that it is too fast to
slow down to zero at the final position and overshoots. This is the case when
st < sbr, with sbr being the closest position where the robot could fully break, by
decelarting the whole way. If the slowest possible time tslow to reach st is smaller
than tt, the robot will not only overshoot, but will also be at the intercept point
faster than desired despite breaking for the whole distance st, as shown in fig. 4.

TIGERs Extended Team Description for RoboCup 2023 7

tbr = (−v0/abr)

sbr = 1
2v0tbr

tslow = −v0 ±
√

v2
0 + 2abrst

(3)

Fig. 4: Trapezoidal Too Slow with forced Overshoot

Setting s∗
0 = sbr, v∗

0 = 0, t∗
t = tt − tbr adjusts the problem to start at sbr

(at roughly 1.3 s in fig. 4) and focus on recovery after the overshoot. Thus, the
robot is no longer too fast, but focuses on being fast enough during recovery,
which is the same problem as being fast enough when no overshoot and therfore
no recovery is enforced, resulting in one of the seven other velocity profiles plus
the preceeding braking phase.

d2: Trapezoidal Shape Possible

a0 =
{

+amax if v0 ≤ vmax

−amax else

t0,1 = vmax − v0

a0

s0,1 = vmax + v0

2 t0,1

(4)

The next general decision is whether a trapezoidal velocity provile is possible at
all. This is done by calculating the distance s0,1 that the robot must accelerate to
vmax. If the robot reaches s0,1 first (st > s0,1), trapezoidal shapes are generally
possible and must be checked. If not, the algorithm can proceed directly with
d6.

d3: Trapezoidal Too Slow
t1,2 = st − s0,1

vmax

t2 = t0,1 + t1,2

(5)

The first velocity profile checked is acceleration to vmax and maintaining that
velocity until st is reached. With t2, the total time to reach st, we can check if
t2 > tt. If it is, the robot cannot reach the destination in time without violating
vmax. The third phase, the braking phase t2,3 is added after the destination is
reached, and the total time t∗

total and the virtual destination position s∗
t are

calculated using eq. (6), resulting in the trajectory shown in fig. 5.

8 M. Ratzel et al.

t2,3 = vmax

amax

t∗
total = t2 + t2,3

s2,3 = 1
2vmaxt2,3

s∗
t = st + s2,3

(6)

Fig. 5: Trapezoidal Too Slow

d4: Trapezoidal Finishing Early The decisions d2 and d3 imply that a trape-
zoidal shape is possible in general and it is fast enough to reach the destination
before or at tt, the next step is to check if a trapezoidal shape with a full stop
is possible so that the trajectory looks as if no tt is given. To do this, two condi-
tions must be satisfied t1,2 ≥ 0 and tt > t3, where t0,1 and t2,3 are from eqs. (4)
and (6):

s1,2 = st − s0,1 − s2,3

t1,2 = s1,2

vmax

t3 = t0,1 + t1,2 + t2,3

(7)

With an unchanged destination position and t3 as total time, the trajectory
shown in fig. 6 can be created:

t∗
total = t3

s∗
t = st

(8)

Fig. 6: Trapezoidal Finishing Early

d5: Trapezoidal Direct Hit The third trapezoidal form is a direct hit, where
the robot will reach the target destination exactly at the wanted time tt, while
driving. With s0,1 and t1,0 from eq. (4) the time of the constant velocity phase

TIGERs Extended Team Description for RoboCup 2023 9

t1,2 can be calculated with the following equations:

s1,t = st − s0,1

t1,2 + t2,t = tt − t0,1

s1,t = vmaxt1,2 + vmaxt2,t + 1
2 (−amax) t2

2,t

t2,t =

√
2 (s1,t − t1,t ∗ vmax)

−amax

t1,2 = t1,t − t2,t

(9)

If t1,2 > 0 and t2,3 > t2,t with t2,3 from eq. (6) is true, a direct hit is possible.
This results in the following calculation for the final trajectory:

vt = vmax + (−amax) t2,t

tt,3 = vt

amax

t∗
total = tt + tt,3

s∗
t = st + 1

2vttt,3

(10)

Fig. 7: Trapezoidal Direct Hit

d6: Straight Too Slow When this point is reached, a trapezoidal shape is no
longer possible and a boundary case must occur before the algorithm can proceed
with triangular shapes, this is the Straight Too Slow case. If v0 > vmax and the
destination position st is reached before the robot could decelerate to v = vmax, it
makes most sense to decelerate in a straight line to v = 0 and end the trajectory
at this point, as the robot can’t be early, as this is handled by the overshoot and
recovery detection. The final destination s∗

t for the trajectory shown in fig. 8 is
calculated using the following equations:

10 M. Ratzel et al.

t∗
total = v0

amax

s∗
t = 1

2v0t∗
total

(11)

Fig. 8: Straight Too Slow

Deciding if this shape shall be used is based only on v0 > vmax, as any other
case, with an initial velocity higher than the maximal velocity, is handled by the
trapezoidal shapes or forced overshoot and recovery.

d7: Triangular Too Slow Analogous to the trapezoidal shapes, the triangular
shapes will be handled, first check if too slow, then if an early end is possible,
and then a direct hit. There are only two reasons why the previous could not
find a solution: Either the robot cannot accelerate to vmax before reaching st, or
all trapezoidal shapes are too fast at the destination position. So checking for
triangular shapes that are too slow only checks if accelerating until reaching the
destination is too slow:

s0,1 = s = v0t0,1 + 1
2amaxt2

0,1

t0,1 =

−

√
2amaxs+v2

0−v0
amax

if s ≥ 0√
2amaxs+v2

0−v0
amax

else

(12)

If t0,1 ≥ tt triangular is too slow, and the trajectory shown in fig. 9 is generated
with the following equations:

v1 = v0 + amax ∗ t0,1

t1,2 = v1

amax

t∗
total = t0,1 + t1,2

s∗
t = st + 1

2v1t1,2

(13)

Fig. 9: Triangular Too Slow

TIGERs Extended Team Description for RoboCup 2023 11

d8.1: Triangular Finishing Early To decide whether the triangle shape can end
prematurely with a full stop, the trajectory is modeled in the same way as for a
triangle shape without timing:

st = v0t0,1 + 1
2amaxt2

0,1 + v1t1,2 + 1
2 (−amax) t2

1,2

v1 = amaxt1,2

v1 = v0 + amaxt0,1

(14)

With this, the t∗
total can be calculated, which decides if the triangular finishing

early can be used: t∗
total < tt.

t1,2 =
√

2samax + v2
0

2a2
max

t0,1 = v1 − v0

amax

t∗
total = t0,1 + t1,2

s∗
t = st

(15)

Fig. 10: Triangular Finishing Early

d8.2: Triangular Direct Hit The only velocity profile left is the triangular di-
rect hit, therefore no additional checks are necessary, and the trajectory can be
modeled with the following equation:

st = v0t0,1 + 1
2amaxt2

0,1 + v1t1,t + 1
2 (−amax) t2

1,t

tt = t0,1 + t1,t

v1 = v0 + amaxt0,1

t1,t =

√
amaxt2

t − 2st + 2v0tt

2amax

t0,1 = tt − t1,t

t1,2 = v1

amax

s0,1 = v0 + v1

2 t0,1

s1,2 = v1

2 t1,2

(16)

Which resolve to the following solution, with fig. 11 as an example:

12 M. Ratzel et al.

t∗
total = t0,1 + t1,2

s∗
t = s0,1 + s1,2

(17)

Fig. 11: Triangular Direct Hit

5 Comparison to Untimed Trajectories

5.1 Increase of the Effective Keeper Range

(a) No Overshoot r2 = 0.45 m (b) With Overshoot r2 = 0.84 m

Fig. 12: Reachable Interception Points at t = 0.75 s

To compare the effect of the overshoot, the situation of a goal shot with
6.5 m s−1 and a distance of 4 m is constructed. Resulting in travel times for the
ball of roughly 0.75 s depending on the carpet and ball model. The distances the
keeper can travel within those 0.75 s are drawn around a keeper in front of a Di-
vision A goal in fig. 12. Within the 0.75 s the keeper travels without overshooting
0.452 m and with 0.835 m, such that the keeper with overshooting can block all
goal shots, that are further away than 4 m. The keeper without overshooting will
need 1.055 s to reach the same distance of 0.835 m as the overshooting keeper,
which translates to a kick distance of roughly 5.3 m. As mentioned above, these
numbers are certainly not completely accurate, as they vary depending on the
carpet and also goal shots cannot be detected immediately by the image pro-
cessing system, but as a rough estimate, over-shooting significantly improves the
performance of the goalkeeper.

TIGERs Extended Team Description for RoboCup 2023 13

5.2 Discussion of Non-Convex Alpha Optimization

(a) α = 81.0◦, ttotal = 2.194 s, vmax = 0.314 m s−1, amax = 0.471 m s−2

(b) α = 78.0◦, ttotal = 2.406 s, vmax = 0.414 m s−1, amax = 0.621 m s−2

Fig. 13: Example for None-Convex Alpha Optimization

As already mentioned, to find the optimal α we use a binary search like ap-
proach, that is based on the assumption, the larger vmax and amax are, the
faster a trajectory must finish, as this implies a convex shape for the absolute
difference between the two axis times ttotal,x and ttotal,y over the optimization
range. As increasing α, increases vmax,y and amax,a, while decreasing vmax,x and
vmax,x, and vice versa. Applying the assumption, increasing α increases ttotal,x
and decreases ttotal,y and vice versa. So the further away from the optimal point,
where ttotal,x = ttotal,y, the bigger the absolute difference |ttotal,x − ttotal,y| will
be. But the assumption, the bigger vmax and amax is, the faster the trajectory
does not hold for every case. Both for the trajectories with and without over-
shooting counter examples can be found, of which one is shown in fig. 13. The
trajectory in fig. 13a with lower maxima finishes over 0.2 s faster than the one
in fig. 13b. Those counterexamples are only possible, if the initial velocity v0 is
greater than vmax, as this anomaly is caused by smaller acceleration amax, caus-
ing the trajectory to stay above vmax for a longer time, leading to a faster time
in total. If v0 is below vmax, the assumption always holds, as this was proven in
[6].

14 M. Ratzel et al.

This problem is the same for timed and untimed trajectories. The α graph
in the upper right corner of fig. 1 clearly shows the existence of the problem
for untimed trajectories. And these trajectories have been used successfully in
the TIGERs software for many years without causing any problems, since this
behavior is only noticeable for small α ranges, and only for rather extreme values
for α. Also, the anomaly only causes issues, if the normally higher time of one
axis drops below the other time, so if the two blue lines would intersect in the
α graphs, which is very unlikely. Moreover, the trajectories are updated many
times per second with new measurements from the global vision system and the
robot’s odometry system, so rare cases of incorrectly optimized α values have a
negligible impact on overall performance. This disadvantages are outweighed by
the high computational efficiency of the binary search approach used.

6 Optimal Ball Interception Point Selection

The selection of the optimal ball interception point is not trivial, the simplest
estimate with the foot of the perpendicular of the robot’s position and the ball
flight line can be improved. If the goalkeeper is standing still and the interception
point is moved slightly towards the goal, the distance the goalkeeper has to travel
increases only slightly, while the distance the ball travels increases significantly.
Knowing how fast the ball and the robot will be at the interception point, it is
possible to calculate how far the interception point should be optimally shifted
towards the goal. However, the TIGERs keeper rarely stands still during a match
and constantly updates its blocking position. Therefore, the calculation becomes
more complex as the initial velocity of the robot strongly influences the optimal
interception point. We decided to use a sampling approach because the entire
trajectory generation process is very performant and can be executed many
thousands of times per second. Every ten millimeters along the ball flight line
and within the penalty area, a position is sampled. At each position the time it
takes for the ball to reach the position is calculated and with this information a
trajectory to a virtual destination is generated.

Trajectories are then selected via the following criteria: distance to the in-
tersection point, velocity, distance to the goal line, and finally time remaining.
Thus, if the goalkeeper cannot reach the destination within the remaining time
at any interception point, the trajectory with the smallest distance to the ball at
its intersection time is selected. If there are multiple locations where the ball can
be reached, the one where the goalie is slowest is selected, as this increases both
accuracy and the margin for adjustments to the destination in the next frame.
If there are multiple positions where the goalie can come to a stop in time, we
prefer positions farther from the goal line. However, only within the first 0.27 m
(3 bot radii), since we consider any interception point further away to be safe.
If there are multiple positions where the ball can be intercepted with a full stop
that are further than 0.27 m from the goal line, the final decision criterion is to
maximize the time between the goalkeeper’s arrival and the ball to maximize
the margin for future adjustments.

TIGERs Extended Team Description for RoboCup 2023 15

7 Conclusion

This paper describes an extension to the existing system for generating 2D tra-
jectories. Unlike the existing approach, this extension does not guarantee that
the robot will reach a destination point in an optimal time manner, including a
full stop. This additional freedom allows the robot to reach the actual destina-
tion faster by removing the full stop constraint, while the extended algorithm
ensures that the robot reaches the destination at a desired time, such as when
intercepting a goal kick.

Since our goalkeeper only had to intercept two goal shots during the entire
2022 RoboCup tournament, and neither shot required an overshot, we cannot
support the claims in this paper with real tournament data. However, field tests
in our laboratory have shown that the claim made in section 5 that the goal-
keeper’s effective range was nearly doubled is reasonable.

References

1. Purwin, O., D’Andrea, R.: Trajectory generation and control for four wheeled om-
nidirectional vehicles. Robotics and Autonomous Systems 54(1), 13 – 22 (2006).
https://doi.org/10.1016/j.robot.2005.10.002

2. Hove, B., Slotine, J.J.E.: Experiments in robotic catching. In: 1991 American Con-
trol Conference. pp. 380–386 (1991). https://doi.org/10.23919/ACC.1991.4791395

3. Ommer, N., Ryll, A., Geiger, M.: TIGERs Mannheim - Extended Team Description
for RoboCup 2022 (2022)

4. Ryll, A., Jut, S.: TIGERs Mannheim - Extended Team Description for RoboCup
2020 (2020)

5. Ryll, A., Ommer, N., Geiger, M.: RoboCup 2021 SSL Champion TIGERs Mannheim
- Ball-Centric Dynamic Pass-and-Score Patterns. In: Alami, R., Biswas, J., Cakmak,
M., Obst, O. (eds.) RoboCup 2021: Robot World Cup XXIV. pp. 241–257. Springer
International Publishing (2022)

6. Kalmár-Nagy, T., D’Andrea, R., Ganguly, P.: Near-optimal dynamic trajectory gen-
eration and control of an omnidirectional vehicle. Robotics and Autonomous Sys-
tems 46(1), 47–64 (2004)

