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1   Introduction 

Skuba is a Small-Size League robot team from Kasetsart University [1], which 
entered the World RoboCup competition since 2006. Skuba got the third place in the 
world ranking last year from the World RoboCup 2008 in Suzhou, China. 

1.1   Team Members 

Jirat Srisabye (research assistant): vision, behavior control, simulation 
Piyamate Wasuntapichaikul (student): electronics, firmware 
Chanon Onman (student): behavior control 
Supparat Damyot (student): mechanics 
Kanjanapan Sukvichai (project supervisor):  control theory, financial support 
Thitiwat Munintarawong (student): apprentice 
Phumin Phuangjaisri (student): apprentice 
 



2   Robot Electronics 

This section describes the robot electronics system including the designs, components 
and some improvements from last year. Details about operations and algorithms are in 
the firmware section. 

The robot consists of two electronics boards: the main board and the kicker board. 
The main board handles all of the robot tasks except kicking and chipping. The kicker 
board is used to control kick and chip action and used to control the high voltage part 
of the robot therefore it is necessary to separate this part from the main board and fit it 
inside the robot for the safety. 

2.1   Main Electronics Board 

The main electronics board was built last year and we put a lot of components on it 
but some of them weren’t used such as current sensors. In this year, the new firmware 
is developed to make the existing components can work fully function.  

The board consists of a Xilinx Spartan-3 XC3S400 FPGA, motor driver, user 
interface, some add-on modules and debugging port. The microprocessor core and 
interfacing logic for external peripherals are implemented using FPGA in order to 
handle the low-level control of the brushless motor such as velocity and position 
control.   The main electronics board receives commands from the main software on a 
computer. The board integrates the processing components together with the power 
components to keep the board compact and minimize wiring. With limited space, 
almost components are in small SMD packages. However, these components still 
large enough for hand soldering with conventional tools. Figure 1 show the main 
electronics board of the robot. 

 

 

Fig. [1]. The main electronics board. 



2.2   Battery and Power Supply 

Each robot uses 4-cell lithium polymer battery with capacity around 1700-2200mAh 
as a power source. The robot can run for several hours with these batteries. There are 
three main power lines in the robot: kicker board, motor driver and processing 
components. These lines are fused with different current rating fuses. The power 
supply current is monitored by the current sensors which are attached to each motor 
driver and kicker board to limit the current when short-circuit occurs. 

2.3   Motors 

There are two types of motor in the robot, the driving motor and the dribbling motor, 
both are brushless motor. Each driving motor is a 30 watts Maxon EC45 flat motor 
with a custom back-extended shaft for attaching encoder wheel. The motor itself can 
produce a feedback signal from hall sensors for measuring wheel velocity. However, 
this multi-pole motor sends only roughly 48 pulses per revolution; therefore, this 
motor is needed to be attached by an US Digital E4P encoder which have higher 
resolution of 1440 pulses per revolution. The dribbling motor is a high speed 15 watts 
Maxon EC16 motor. Despite a very low resolution of 6 pulses per revolution signal 
from hall sensors, the implementation of the PI control law is possible when using this 
motor at high speeds. The dribbling bar maximum speed is about 13000 rpm. 

The motor driver is a three phase inverter circuit using complementary N and P 
channel power MOSFET in each phase. This configuration doesn’t require bootstrap 
driver as in N channel only configuration. These MOSFETs are driven by MOSFET 
driver ICs to minimize switching loss. The motor commutation and PWM generation 
are described in the firmware section. Figure 2 shows the three-phase brushless motor 
driver circuit. 
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Fig. [2]. The three phase inverter in complementary configuration. 



2.4   Kicker 

Both kicker and chip kicker in the robot are energized by solenoids. These solenoids 
are fed with a high current impulse to produce intense magnetic field in a short period 
of time. The impulse current is created from discharging the high voltage capacitor 
into solenoid wire. Charging and discharging the capacitor are controlled by the 
kicker board. This board consists of power switching devices: MOSFET and IGBT 
which are controlled from the main board. 

The charger is a switching DC boost converter circuit. The RC snubber is added 
into the switching node in order to reduce ringing and EMI which are created by the 
parasitic inductances and capacitances [2]. Last year, we used a large toroidal 
inductor in the charger which can withstand a high current without overheating. This 
year, we use the smaller SMD inductor with the same current rating. However, this 
inductor has a lower inductance so we need to increase the switching frequency. With 
current design, the kicker board can charge two 2700 µF capacitors from 0V to 250V 
in about 5 seconds with 2A average current. 

The kicker is a cylindrical shaped solenoid attached to a curved kicking plate and 
the chip-kicker is a flat shaped solenoid attached with a 45 degree hinged wedge. 
These solenoids are driven by IGBTs and the kicking force is controlled using PWM 
signal. The kicker board is depicted in Figure 3. 

 

 

Fig. [3]. The kicker board. 

2.5   Sensors 

There are several local sensors to get some helpful information from the robot. The 
infrared break beam in front of the kicker is used to detect the presence of the ball. 
This sensor is useful in the passing and one-touch shooting skills that use this sensor 
as a trigger for the kicker because the vision cannot detect the ball location accurately. 
We are also developing another infrared sensor which uses an array of infrared 
emitters and detectors to detect the ball position relative to the robot, so the robot can 
localize itself more accurately rather than using only the vision when receiving or 
approaching the ball. 



2.6   Communication 

The communication between robots and the server can be made by using a radio 
device. A bi-directional wireless module is operating at 2.4GHz frequency in ISM 
band which offer channel switching around 2.4GHz to 2.5GHz for the 
communication. These modules consist of some variants of wireless transceiver ICs 
from Nordic Semiconductor: nRF2401A, nRF24L01 and nRF24L01+. Despite the 
modules with lower frequency have longer range and lower interference, some of 
them aren’t permitted in some region. 

Each robot communicates with an external wireless board which is linked to the 
computer via a USB port. This board consists of two independent wireless modules 
which can provide a full-duplex communication. 

2.7   Debugging 

The main board has switches, LEDs and buzzer to provide debugging capabilities. 
These components are connected to the FPGA using shift registers to minimize FPGA 
input/output pins so in this case only four signal lines are used. The robot can perform 
several tests for calibrating and setting parameters such as the kicker force and sensor 
compensation without using any commands from the computer. These parameters are 
also saved inside an onboard non-volatile memory. This memory also used as storage 
for capturing encoder, current or other information which can be downloaded via a 
serial port. This information is very useful for PI controller tuning and sensor 
calibration. 

3   Robot Firmware 

The main electronics board consists of a FPGA as a single chip central controller. The 
FPGA is embedded with a 32-bit processor, brushless motor controller, PWM 
generator, quadrature decoder, kicker board controller and onboard peripheral 
interfacing cores: SPI and UART. The processor runs at 30MIPS as same as oscillator 
clock speed. We use Altium Designer and Xilinx ISE software to generate, configure 
and debug these cores.  

3.1   Brushless Motor Driver 

The three phase inverter bridge is fed with signals from FPGA to provide 
commutation for each motor. These signals are ANDed with the PWM signal to vary 
the average voltage applied to the motor winding. The six steps commutation 
sequence is detected by three hall sensors in the motor. 

 
Last year, we kept the high side driver turn on for each commutation step and send 

the PWM signal to the low side driver only. We found a crucial problem caused by 
this approach [3]. The motor runs normally in quadrant I and III which torque and 



velocity are in the same direction (the motor is accelerating). When operating in 
quadrant II and IV (the motor is braking) the high side driver shorts the motor’s back 
EMF in every commutation step, creating a reverse torque. This torque cannot be 
controlled as it’s from the high side driver which is fully turned on for each 
commutation step. 

 This problem can be solved by sending the PWM signals to both high and low side 
drivers. As shown in Figure 5, the motor velocity are observed when the motor is 
accelerating and braking. The blue line indicates desired motor velocity and the red 
line indicates actual observed velocity. The problem is solved by using new PWM 
method and the motor runs smoothly both accelerating and braking. These two results 
are captured from one of the robot motor controlled by a properly tuned PI controller 
with no load. Note that the deceleration in the lower chart is higher than the upper 
one. 

 

TORQUE

VELOCITY

CWCCW

CW

CCW

III

III IV

 

Fig. [4]. Quadrants of operation. 

Results from the old and new methods are captured and shown in Figure 5. There 
is an oscillation in motor velocity from the old method but no oscillation from the 
new method. This oscillation caused by the uncontrollable reversing torque. This 
result implies that the robot brakes scraggly if the robot is driven by the old method 
but if the robot is driven by the new method, the robot can brake smoothly. 
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Fig. [5]. Upper is the result from old method. Lower is from new method. 

3.2   Motion Control 

The robot employs a PI controller as a motion controller, one controller for each 
motor. The control loop executes 600 times per second using velocity feedback from 
the encoder in driving motor and hall sensors in dribbling motor. The proportional 
and integral gains are manually hand-tuned. The computer sends a velocity for each 
DOF: x-y axis and rotation axis. Then, converted to each wheel velocity and sent to 
the PI controller. In order to control the motor, the dynamics of the motor has to be 
modeled first. The dynamic equation for the Maxon brushless motor can be described 
as [4]:  
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where,  
u  is the input voltage 

m  is the motor output torque 

mk  is the motor torque constant 
  is the motor angular velocity 

R  is the motor coil resistance 



Equation (1) is not easy to be directly implemented to the robot; therefore, this 
equation has to be modified by using the Maxon parameters relationship, which is 
shown in its datasheet, and the final dynamic equation of the motor is  
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where, 

nk  is the motor speed constant  

 
This equation shows that we can control the output torque of the motor at specific 

angular velocity by control the control signal u . The control law is set using the 

discrete Proportional-Integral control law and torque dynamic equation (2). The 
control system runs at 600Hz cycle.  The error between desired angular velocity and 
real filtered angular velocity of each wheel is the input of the PI controller with the PI 
gains pK and IK   respectively. The controller is shown in Figure 6 and the control 

law can be described as (3) though (5). 
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Fig. [6]. Torque controller scheme. 
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where, 
N  is the number of samples 

ccV  is the driver supply voltage   

 
The output from (5) is converted to the Pulse Width Modulation (PWM) signal and 

directly used as input signal for every poles of the Maxon brushless motor. The 



difference between the regular discrete PI controller for the wheel angular velocity 
and the torque controller is the torque converter block which is shown in Figure 6 and 
defined as (5). Finally, equation (5) is implemented in the robot. 

In order to see the advantage of our new controller, the experiment is set up. The 
robot is run with two control schemes in three different rugs with different surface 
friction coefficients (  ) when    1 2 3 as shown in Figure 7. 

  

 

Fig. [7]. Three different surfaces. 

The robot is forced to move along the y-axis from coordinate [0,-2.5] to coordinate 
[0,0] in order to see the effect of the surfaces. Figure 8 shows the result when the 
robot is forced to move with high speed. The left side is the robot paths from the robot 
with the torque controller and the right side is the robot paths from the robot with the 
regular velocity controller.  

 

 

Fig. [8]. Result when robot is moving in three different surface rugs with high speed. 



The experiment is repeated using lower running speed. The result is shown in 
Figure 9. The robot is run without using vision feedback in these experiments. 

 

 

Fig. [9]. Result when robot is moving in three different surface rugs with low speed. 

The experimental results show that the robot with the torque controller can move 
on the rugs more stable than the robot with regular velocity controller. The 
differences of robot paths in three different surfaces are smaller when using the torque 
controller. These experiments confirm that the torque controller can make a robot 
move better on any surface than the regular velocity controller. By this advantage, the 
robot can be easily tuned during the competition. 

3.3   Over-current Protection 

General problem when driving the inverter bridge is the shoot-through current. This 
current is caused by turning on one side driver immediately after turned the other side 
off as the MOSFET turn-off time is usually higher than the turn-on time. This 
situation occurs when the motor is reversing direction, which can be prevented by 
adding a small delay time between each high and low side driver signal. 

In this year, many robot skills are relied much more on the dribbler. Some ball 
stealing skills can cause dribbling motor to stall when the dribbling bar is contacted 
with the opponent robot. The stalled motor consumes very high current and often burn 
the fuse out. This over-current situation can be detected by a current sensor and can 
be prevented by limiting a PWM duty cycle until the current drop below the safe 
motor operating current. Figure 10, depicts the motor stalling situation. When the 
motor stalled, the motor current increased and dropped in a short time due to limited 
duty cycle. The motor current are controlled around the limited threshold while the 
motor is stalling. 
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Fig. [10]. PWM duty cycle, velocity and current. The motor is run from stop. 

Then, a very large load applied to the motor in between 0.5 sec to 1.5 sec.  
Current value is in ampere, duty cycle and velocity are normalized. 

3.4   Kicker 

Kicker board consists of power electronic components which are controlled directly 
from the FPGA in the main board. The board requires PWM signal for switching 
circuit and another PWM signal to impulse the kicker with the desired kicking force. 
The switching DC converter uses a soft-start method to reduce inrush current when 
the capacitor is empty. This method is done by starting with the low duty cycle and 
ramping up over the time until it reaches the limit. The ramping starts again when the 
kicker is activated. Details about operation and implementation of a similar circuit are 
in [5]. 

3.5   Infrared Sensors 

The robot uses a pair of infrared break beam. The infrared detector signal is compared 
with the threshold level and outputs a digital signal to the FPGA. 

In addition, an array of infrared emitter-detector pairs is used to detect the position 
of the ball in a very precise value compared to the vision. However, operating these 
two types of infrared sensors in the same time will cause infrared light to interfere 
with each others. The robot runs the calibration first, by reading sensor values when 
all of the emitters are turned off to get the ambient values. Then, each type of the 
emitter turns on and off sequentially to read the value for each sensor. The later 
readings are subtracted with the ambient readings to obtain only the sensor values. 
Each infrared emitter can be driven from very high current up to several hundreds of 
milliamperes using this method due to very short period of turn-on time. This high 
current capability improves the range and signal to noise ratio for the detectors. The 
sensor data interpretation method is currently still in development. 



3.6   Communication 

The robot commands are sent to each robot for each frame of software execution. 
Then, each robot sends back the status after received its commands immediately. The 
commands are in small packet containing velocities, dribbler and kicker command 
with some headers for testing and calibrating purpose. The robot status contains a 
battery level, current consumption and sensors information. 

4   Robot Mechanical Design 

This section describes the mechanical system of the robot which consists of the 
driving system, ball control system and kicking system. In RoboCup 2008, we 
experienced the problem with many parts of the robot and they are the guideline to 
our development in this year.  

4.1   Wheels 

Skuba robot uses an omni-directional wheel for the first time in Skuba 2005 model. 
This robot has only three wheels. Skuba 2006 model uses four omni-directional 
wheels rather than three wheels in order to get more speed and acceleration. Each 
wheel is made from aluminum with thirty small rollers. Although the robot can make 
the smooth motion, it still has a lot of slipping. 

Skuba 2009 robot uses four omni-directional wheels. The wheel has a diameter of 
50.8 mm which its cover is made from aluminum and its base part is made from 
polycarbonate, the light weight material, with fifteen rollers. Double seal o-ring is 
used for each roller in order to get more friction. All of these components, leading to 
the light weight and better tracking wheel and finally we have a light weight and 
better robot. We use pins to fix the position between the cover and the base to reduce 
the positioning error. This wheel makes robot moving with higher acceleration at 
approximately 3.5 m/s2 and higher velocity at approximately 5 m/s. These values are 
the maximum controllable velocity and acceleration that the robot can provide. The  
Skuba 2009 wheel is shown in Figure 11 (CAD model) and Figure 12 (real wheel). 

 

 

Fig. [11]. Omni-directional wheel structure. 



 

Fig. [12]. Real omni-directional wheel used in Skuba 2009 robot. 

4.2   Driving System 

The previous robot models (Skuba 2006 and Skuba 2007) used Faulhaber 2224 motor 
with the gear ratio of 14:1. We applied the voltage of 12V to the motor that is limited 
to 6V. Thus we encounter with a trouble of overheating and burning out. This motor 
can produce acceptable moving speed at that moment but for now, it requires more 
velocity and acceleration to make the robot more competitive. 

Skuba 2009 robot uses brushless motor, 30 watts Maxon EC45 flat, in the driving 
system which can produce a lot of torque and more robust than the previous model. 
The driving system uses gear ratio of 3.60:1 (72:20). This is the proper ratio to get the 
satisfying acceleration and velocity with the specified wheel diameter. Another reason 
to choose this motor is its lower price than the previous model. The 5 mm-thick 
bottom plate connects all of the robot parts together. The robot’s partly assembled 
chassis is shown in Figure 13. 

 

 

Fig. [13]. The robot’s chassis with four brushless driving motors. 



4.3   Ball Control System 

4.3.1   Suspension System 

In Skuba 2008 robot, it is the first time that we applied the suspension system to the 
robot. It is a swing suspension hinged with the chassis plate which is attached with a 
sponge damper. We use adjustable screw as the stopper, allowing the suspension 
swing about 6.5 degree. This suspension system makes the robot able to receive the 
fast moving ball in passing skill. 

This year, we develop a new suspension system using the stronger material, 
stainless steel, and design a firmly structure which result in the more robust system 
than the previous model. Furthermore, both outer sides of the suspension arms are 
equipped with the covers to protect the infrared sensors from damaging. Figure 14 
shows the suspension system of the Skuba 2009 robot. 

 

 

Fig. [14]. The suspension with sponge damper. 

4.3.2   Dribbling System 

Suspension and dribbling system are both necessary for controlling the ball. In Skuba 
2009 robot, 15 watts Maxon EC16 is used as a dribbling motor. It can produce high 
torque and speed. The gearhead is attached to this motor. The dribbling bar can spin at 



the maximum speed of 13000 rpm. The dribbling bar is made from aluminum rod 
with diameter of 10 mm as shown in Figure 15. The dribbling bar is covered with a 
silicone tube which has a good property to drib the ball. Although this material is 
good but sometimes it cannot grab the ball; thus we will try to find the better material 
that has more flexibility. Both suspension and dribbling system are designed with 
respect to the rules. 
 

 

Fig. [15]. The dribbling system. 

4.4   Kicking System 

4.4.1   Kicker 

The kicker is energized by solenoid system. It is the cylindrical solenoid wound with 
seven layers of 23AWG enameled wire. The kicking plunger rod is separated into two 
parts. The first part is magnet part which is made from steel and the second is made 
from material with no magnetic property, aluminum. Both rods have the diameter of 
11 mm. These rods are joined together and attached with the curved aluminum 
kicking plate. This plate has a contacting radius of 300 mm which results in more 
accurate shooting when the ball is not in the center of the kicker. The kicking system 
makes the robot able to kick the ball at maximum speed of 12-14 m/s. 



4.4.2   Chip Kicker 

In Skuba 2008 robot, it is the first time that we use the new platform of the chip 
kicker, a flat shaped design. We encounter with many problems such as: unstable, 
accuracy. Although it has many problems, it still provides lot of advantages. This 
platform needs smaller area and makes robot more stable due to the lower center of 
mass. This year, the chip kicker is improved by using original platform of Skuba 2008 
model. 

The chip kicker uses the flat solenoid which is the fiber reinforced Bakelite wound 
with four layers of 22AWG enameled wire. This solenoid is placed in the front part of 
the bottom plate. The flat plunger is steel with the thickness of 3.75 mm. 

The chipper is a hinged wedge which swings around the pivots. Pin is used as a 
pivot rather than the bearings because it has more endurance. The swinging degree is 
also limited by the other pins. The chipper is redesigned and made by one piece 7075 
aluminum alloy, which has extra more strength than the standard aluminum. It has a 
45 degree slope at the front as the contact point. This chip kicker has an ability to chip 
the ball with a maximum distance of 7.5 m. Moreover, this chip kicking system is 
more stable, accurate and robust than the old one. This new design and new material 
make the robot performs excellent chip kicking action. The chip kicker components 
are shown in Figure 16 and Figure 17 shows the chip kicker solenoid. 

 

 

Fig. [16]. The chip kicker components. 

Cast Nylon Core   Bakelite Core  Plunger 
   (Old Design) 



 

Fig. [17]. The chip kicker solenoid. 

After combining the entire robot parts, the complete Skuba 2009 robot is shown in 
Figure 18.  Table 1 shows the comparison of Skuba 2007, 2008 and 2009 robots. 
 

 

Fig. [18]. The  fully assembled Skuba 2009 robot. 



 Skuba 2007 Skuba 2008 Skuba 2009 
 
 
 
 
 
 
General 
Weight 
Material 

 
 

2.35 kg 
Aluminum 

 
 

2.10 kg 
Aluminum 

 
 

2.30 kg 
6061 Aluminum alloy 

Driving 
Driving motor 
Motor power 
Gear ratio 
Max velocity 
Max acceleration 
Wheel material 
Wheel diameter 
No. of rollers 
O-ring type 

 
Faulhaber 2224 

6 watts 
14 : 1 
2 m/s 

2.5 m/s2 
Aluminum 

62 mm 
30 

Round 

 
Maxon EC45 flat 

30 watts 
3.6 : 1 
3.5 m/s 
3.5 m/s2 

Polycarbonate 
50.8 mm 

15 
Round 

 
Maxon EC45 flat 

30 watts 
3.6 : 1 
3.5 m/s 
5 m/s2 

Polycarbonate 
50.8 mm 

15 
Double seal 

Ball Control 
Dribbling bar 
Dribbling material 
Dribbling motor 
Dribbling speed 
Suspension 

 
Stainless steel, 3 mm 

Sponge 
Faulhaber 2224 

2500 rpm 
No 

 
Aluminum, 10 mm 

Silicone 
Maxon EC16 
13000 rpm 

Yes 

Kicking 
Kicker radius 
Capacitor 
Kick velocity 
Chip distance 

 
80 mm 

1100µF, 400V 
7-8 m/s 
2.5 m 

 
150 mm 

4400µF, 250V 
10-11 m/s 

3.2 m 

 
300 mm 

5400µF, 250V 
12-14 m/s 

7.5 m 

Table 1. Comparison of Skuba 2007, 2008 and 2009 robots. 

 



5   Vision System 

Our vision structure diagram is shown in Figure 19. The description is also shown 
below Figure 19. 

 

Fig. [19]. The vision system. 

 
• Capture Device 
The Skuba vision system applies the global vision and uses the output signal of two 
AVT Stingray F-046C 1394b firewire cameras which is capable of grabbing 780 x 
580 images at 62 fps. 

 
• Preprocessing 
The preprocessing is used to improve the quality of the image. 

 
• Transform Color Space 
We transform color model to the HSV space, which consists of a hue, a saturate and a 
value. The HSV space is more stable than RGB space in different light properties. 

 
• Color Segmentation 
The color segmentation assigns each image pixel into color classes. Currently, we 
classify and segment color by CMVision2.1 library [6]. 
 
• Object localization 
After color segmentation, we receive all the color regions. The filtering process 
discards incorrect regions. Then, object localization computes the position and 
orientation of objects in the field from the final regions. 



 
• Tracking Update 
Objects which is received from localization has a lot of noise, so we need to track it. 
Our approach is working by the Kalman Filter. 

 
• Transmit to AI 
This component consists of network link communication between the vision system 
and system 

5.1   Camera Calibration 

Camera calibration is a part in Object localization. We compute the internal and 
external parameters of the cameras using the Tsai [7] algorithm. These parameters are 
used to correct the distortion produced by the camera lenses.  

6   AI System 

Our AI system has been written in C++ and C# language. All software environments 
were developed under Microsoft Visual Studio 2008.  

6.1   Overall Loop 

Our system runs exactly 62 times per second equal to camera framerate. Figure 20 
shows our overall execution loop. 

 

Fig. [20]. System execution loop. 



6.2   VisionServer 

The integration of all cameras’ information is done on the VisionServer process. The 
information from two cameras which come from different partially overlapped 
regions is integrated. Some redundant information is presented. Each information is 
tagged with the confident value based on confident rules. When the information from 
two cameras are inconsistent, for example when there are more than one of the same 
type of object from different camera, the server decides on the highest confidential 
information. Finally, the vision server sends the consistent information of the whole 
situation to the BehaviorClient. 

6.3   BehaviorClient 

The BehaviorClient has three main modules. At the First VisionModule receives 
vision information from VisionServer or SimulatorServer and predicts that 
information to account for latency. Then StrategyModule gets predicted vision 
information from the VisionModule and chooses destinations for all 5 robots. Finally 
ControlModule retrieves predicted vision from VisionModule and destinations from 
StrategyModule and makes robots go to those destinations.  

6.3.1   VisionModule 

This module was liable for taking the vision data, extracting velocity information 
from it, and predicting the location of the robots and the ball in the future frame.  

Our total system latency, measuring from the period between command velocity 
and raw velocity, was approximately 133 ms (8 frames). When our robot move at the 
fastest speed, that is up to about 3.5 m/s, the distance between real robot position and 
the robot position from vision data will grow up about 47 cm. In order to correct this 
error we have to estimate the positions and orientations of the robots. The estimation 
architecture is shown in Figure 21. 

 

 
Fig. [21]. Estimation architecture. 



For the opponents and the ball, filtering and estimation were performed using 
Kalman filters [8]. For teammate robots, the commanded robot velocities were used to 
gain more accurate estimation of their position.  

6.3.2   StrategyModule 

We have a hierarchical model in our StrategyModule design. The module is rebuilt 
from scratch by using strategy structure based on Cornell Big Red 2002.  

The StrategyModule consists of multiple Plays. Whenever a Play is executed it 
calls the Roles for all Positions present. Then Roles run Skills for the related robots. 
All the plays are stored in the PlayBook in an array, while all the skills are stored in 
each SkillSet array. 

The StrategyModule architecture is depicted in Figure 22. There are five layers, 
described in detail below. 

 

 

Fig. [22]. StrategyModule architecture. 

Play represents a particular global state of the AI and the general goal the positions 
are attempting to achieve at any given time. Examples are “OffensePlay”, 
“DefensePlay”, “FreekickUsPlay”. During any play, roles for positions that are 



present are executed. There are unique roles for each position for each play and plays 
do not call skill directly. The system will transition from one play to another when 
necessary by PlayTransition, but while in a particular state a particular play is being 
executed every frame. 

After receiving data from referee box signal, Manager will select the group of play 
that suitable for that moment such as “GrazManager” or “SuzhouManager”. Each 
Play in Manager is configured by system parameter. 

Skill is a basic action of robot, such as “ShootingSkill” or “GetBallSkill”. Each 
robot has a set of skills stored in a SkillSet object. Each skill is different and performs 
a different function. Skills allow state to be kept because skills are objects with 
private data, not just functions as used in the past. In addition, skills provide various 
methods for initialization, running, loading and reloading parameters, and much more. 

Role is a combo set of skills that call by each position, such as “ForwordRole” or 
“GoalieRole”. By the way, both plays and positions can call skill directly but it will 
complicate if they have many states. Roles are object that inherit from skill, so they 
have same properties with skill. 

There exist four robot positions on the field Blocker, Defender, Aggressor, and 
Creator. The fifth robot position is called SpecialOp that can take on one of three 
dutys: SpecialOpDefender, SpecialOpAggressor, or SpecialOpCreator. 

The Blocker remains in the defense zone the majority of the time, only venturing 
slightly outside of it at times. The Blocker is the only position that will try to grab the 
ball when inside of the goalie box. 

The Defender is a dedicated position to the defense. The defender always remains 
on our side of the field, almost entirely in the defense zone, and works with or 
supplements the actions of the blocker, stopping shots or closing holes whenever 
possible.  

The Aggressor is the most active player on the field. See a robot who has the ball, 
he's undoubtedly the aggressor. See a robot go up to an opponent who has the ball, 
either to screen him from our goal or strip the ball away, that is the aggressor. 

The Creator is our dedicated robot to creating opportunities. The creator spends the 
majority of his time far upfield, either in the kill zone, offensive zone, and sometimes 
as low but never lowers than the death zone.  

The SpecialOpDefender acts as an auxiliary defender. When available, the 
SpecialOpDefender may screen auxiliary opponents who are coming down the field 
from getting near the ball. He may also help block passes or shots on goal. Usually he 
roams slightly in front of the Defender, or on the opposite side of the field, allowing 
him to move upfield and become a SpecialOpAggressor or SpecialOpCreator when 
the play changes. 

The SpecialOpAggressor assists the aggressor. This means running screens to help 
the aggressor dribble up the field, setting up picks for quicker jukes by the aggressor, 
and also getting open for quick passes upfield when the aggressor gets bogged down. 

The SpecialOpCreator helps the creator create opportunities by screening or 
various other blocking techniques. He also gets open for a pass under such scenarios. 



6.3.3   ControlModule 

ControlModule receives predicted vision from VisionModule and destinations from 
StrategyModule and makes robots go to those destinations. So, the essential 
component of ControlModule is a path planning algorithm. 

Since the World RoboCup 2008 at Suzhou, we have made use of the “Real-Time 
Randomized Path Planning for Robot Navigation” [9] for default path planning 
algorithm. The path planning developed representation on Rapidly-Exploring Random 
Trees (RRTs) as shown in Figure 23. 

 

 

Fig. [23]. The robot path result from our path planner. 

6.3.4   Modified Robot Kinematics 

Robot kinematics can be regularly used to generate the path, but in order to make the 
path more realistic, the dynamics have to be concerned [10], [11]. Although the 
dynamics can be correctly used to predict the robot behavior but it is hard to be 
directly implemented to the system and it needs a long computation time. Therefore, 
the modified robot kinematics is introduced here. Skuba robot chassis is shown in 
Figure 24 and its kinematics is equation (6). 
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Fig. [24]. The robot chassis. 



The regular mobile robot kinematics is modified. First the friction force and 
traction torque vector are defined as a system disturbance. The normal kinematics can 
be written as: 

 
  r Desired                                                          (6) 

where, 
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d  is the distance between wheels and the robot center 
  is the angle between robot axes and the world reference axes 

i  is the angle between wheel i to the robot x-axis  

 
Desired robot velocity ( Desired ) is used to generate robot’s wheel angular velocity 

vector ( r ). This wheels angular vector is the control signal which is sent from PC to 

interested mobile robot. The output linear velocity ( Captured ) is captured by a vision. 

The output velocity contains information about disturbances; therefore, by comparing 
the desired velocity and the output velocity. The output velocity can be defined as (7) 
when assuming that disturbance is constant for the specific surface. The disturbance is 
modeled and separated to the disturbance from the robot coupling velocity and the 
disturbance from the surface friction. 

 
†( )Captured r                                                    (7) 

where, 
†  is the pseudo inverse of the kinematic equation 

  is the disturbance gain matrix due to the robot coupling velocity  

  is the disturbance vector due to the surface friction 
 
The disturbance matrices can be found from experiments. The first desired robot 

velocity ( Desired 1  ) is applied to the robot in order to get the first output velocity 

( Captured 1 ) in the first experiment. The first experiment is repeated in the second 

experiment with the second desired robot velocity ( Desired 2 ) and the second output 

velocity ( Captured 2 ) is captured. The disturbance matrices now can be found by adding 

(6) to (7) for both experiments yield the following equations: 
 

†( )Captured Desired         1 1                                     (8) 



†( )Captured Desired         2 2                                     (9) 

Subtract (8) by (9): 
 

† †( ) ( )Captured Captured Desired Desired                 1 2 1 2  
† †(( ) ( ) )Captured Captured Desired Desired I          1 2 1 2                  (10) 

 
Substitute (10) to (8) and   is found. Finally, the modified kinematics is 

completed.  

6.4   RadioServer 

Commands which are generated from two individual StrategyModules are 
encapsulated into a single packet in the RadioServerModules. After commands are 
packed, the module will send this packet to the wireless board via a USB port. This 
year, we use full duplex communication for our system in order to get some 
information form robots in real-time. Therefore, this RadioServerModule is also used 
to receive the send-back data and return it to each StrategyModule.  

6.5   SimulatorServer 

Our SimulatorServer is developed in order to simulate robot hardware behavior. The 
SimulatorServer receives a sequence of packets which is identical to packets that are 
sent to real robots then calculates some simple physics and returns the coordinate of 
objects in the field to the software as same as the VisionServer does. Our 
SimulatorServer is entirely independent from AI System which is capable of 
simulating all the field objects and latency of the system.  

The field objects are simulated by physics engine library called Open Dynamics 
Engine (ODE) [12]. The SimulatorServer provides connection socket for some two AI 
systems which means that the simulator is capable to simulate a real competition 
situation. 

7   Conclusion 

The new hardware design and the new low level motion controller have implemented 
and they improved the speed, precision, and flexibility of the robots. With some 
filters, we could acquire precisely coordinates of all players. The modified robot 
kinematics is used in the simulator and in the real robot. It can improve the robot 
overall efficiency. We believe that the RoboCup Small-Size League is and will 
continue to be an excellent domain to drive research on high-performance real-time 
autonomous robotics. We hope that our robot performs better in this competition than 
the last year competition. We are looking forward to share experiences with other 
great teams around the world. 
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