Parsian
(Amirkabir Univ. Of Technology Robocup Small Size Team)
Extended Team Description for Robocup 2012

Vahid Mehrabi!, Ali Koochakzadeh?, Seyed Saeed Poorjandaghi®, S.Mehdi
Mohaimanian Pour?, Erfan Sheikhi®, Alireza Saeidi®, Pourya Kaviani®, Sina
Saharkhiz’, and Ali Pahlavani®

'Mechanical Engineering Department, Sharif University of Technology
2Electrical Engineering Department, Sharif University of Technology
3Electrical Engineering Department, Amirkabir Univeristy of Technology
4Mathematics and Computer Science Department, Amirkabir Univ. of Technology
5Mechanical Engineering Department, Amirkabir Univeristy of Technology
SMathematics and Computer Science Department, Sharif University of Technology
"Electrical and Computer Engineering Department, University of Tehran
small-size@parsianrobotic.ir

Abstract. This is the extended team description paper of the Robocup
Small Size Soccer Robot team “Parsian” for entering the Robocup 2012
competitions in Mexico. In this paper we will represent detailed descrip-
tion of our robots’ hardware design, as well as the software architecture
in detail with focus on new improvements that have been made since
last year. Improvements and developments that seemed innovative and
useful like our approach in new mechanical design, important parame-
ters that should be considered during design, improvements on planinng
structure and enhancements in predefined plays, a high speed positioning
evaluator will be discussed in detail.

1 Introduction

“Parsian” small size soccer robots team, founded in 2005, is organized by electri-
cal engineering department of Amirkabir University of Technology. The purpose
of this team is to design, build and program a small-size soccer robots team
compatible with International Robocup competition rules as a student based
project. “Parsian” team is a group of ten active members with electrical, me-
chanical and computer science/engineering backgrounds. We have been qualifed
for six consequent years for the international RoboCup SSL. We participated in
2008, 2009, 2010 and 2011 RoboCup competitions. Our most notable achieve-
ments are being awarded second place in RoboCup Iranopen 2012 competitions
and second place in Robocup 2010 SSL’s technical challenges.

In this paper we first introduce our robots’ hardware (section 2). Our new
mechanical design will be discussed In section 2.1 and our electrical design will
be covered in section 2.2. Section 3 explains our software framework including
high level planning algorithm and low level control algorithms.

Fig. 1. Our Robots

2 The Robot’s Hardware

2.1 Mechanical Design

In this section we are going to describe the mechanical system and design pro-
cedure of our robots which consists of drive system, dribbler, kickers and so on.
The dimension and other major parameters of our robots are described below.
Figure 2 shows our 3D CAD model with our real robots with and without cover.

Robot Diameter 178 mm
Robot Height 138 mm
Ball Coverage 19 %
Max Linear Velocity 3.5 m/s
Weight 2.0 kg
Maximum kick speed 15m/s
Maximum chip kick distance 7.0 m

Maximum passing ball speed catching 5m/s

After Robocup 2010 we decided to design a new type of robots that are
more accurate, agile and reliable. So in order to specify the design process we
introduce some major goals for our robots that must be in mind during design,
and those are:

1. Minimum possible size for all of the parts (until you were bounded by other
constraints such as strength criterion) in order to reach lighter parts, more
agile robots and also less damage to motors.

2. A little more complex part is better than two simple parts. Due to possible
damage of robots and necessity for replacement, less part is a criterion in
design.

3. Strain and displacement criterion is more important that stress criterion.
In some components failure will cause due to relative displacement of parts

and not fracture of them. For example chipper head may be deformed (not
broken) due to high impact of solenoid bar that causes failure.

4. Every heavy component must be as low as and also as behind as possible.
Because high amplitude of acceleration and deceleration in motion of robots,
center of gravity plays a major role in maximum possible amplitude of agility.

5. Reliability is one of the most important points in design. Tolerances in parts
and between moving object must be in an acceptable range in all of the
robots in order to have homogenous robots.

These are the facts that we considered during the design of our 2011 version
robots. However after Robocup 2011 we realized some minor fault in wheels,
dribbler and base plate that was fixed after. These changes lead us to another
criterion in design:

1. All of touching parts with ground (except friction make parts) must be as
smooth as possible in order to have smooth motion.

In later section we will introduce more details of our robot components.

Fig. 2. Our current robots with and without cover (Top) 3D CAD model (left) and
side view (right)

Fig. 3. (a) Driving package(left) (b) Wheel (right) (c¢) Detailed exploded view of wheel

Main Structure and Driving System Our robots main structure is made
of aluminum alloy 2024-T3 to keep it robust and light. To prevent short circuit
between electrical components and to reduce erosion, all parts are harden an-
odized. All of our robots is been driven by four omni-directional wheels , each
has the diameter of 55mm and contains 16 sub-wheel made from aluminum alloy
7075. Instead of o-ring, double seal x-ring is used for each sub-wheel in order to
get more friction with ground. The robots wheel with details is shown in Figure
3(c).

For the driving system we use 30 watts Maxon EC45 12volts motors that are
mounted to the wheels with an internal gear with ratio of 3.6:1 (76:21). The gear
is made of spring alloy steel with high tensile strength and 50HRC hardness and
thickness of 3mm. Whole driving package is shown in Figure 3(a).

Ball Control and Suspension System One of our major changes in robots
is in the dribbling and suspension system that have been replaced from one
degree of freedom mechanism to two degrees of freedom system. This increase in
DF helps us to calibrate the ball position and spin back speed easily and more
efficiently. It can also hold the ball stronger and damp the energy of the passing
ball without losing it more effectively. With use of simulation and measurements
we find out that the maximum pass speed that this system can catch is up to
5m/s.

Our future plan for improving the suspension system is to control one of the
DFs with a servo motor in order to calibrate it automatically. The drive system

Fig. 4. Dribbling and Suspension System

for the spin back module is 15watts Maxon EC16 12volts motor mounted to
the gearhead with total gear ratio of 3.6:1 (36/10) that speedup the silicon-tube
coated spinner up to 12000rpm. Both side of dribblers arm are equipped with
the cover to protect the ball detection sensors from damage. Figure 4(a) depicts
suspension system in robots.

Direct/Chip Kick Our kicker is made of a cylindrical solenoid with length
of 55mm wound with about 520 turns of 23AWG enameled wire. We optimized
our direct kicking system to consume less space without losing efficiency. Kicker
plunger is made of three parts, two with paramagnetic characteristic and one
with magnetism ability which are thread fastened to each other. The diameter
of plunger is 13mm and length of 130mm. The direct kick mechanism is able to
kick the ball at maximum speed of 15m/s. 3D CAD model of kicking system is
depicted in Figure 5(b).

Due to high impact force made by no ball kicking, all of the kicking bar
energy must be damped in the system without any failure. So the kicking bar
must be strong enough to absorb the impact energy, but in our 2011 design
the connecting bar that was made of Aluminum alloy 7075 couldn’t endure the
fatigue stress and broke after some cycle. After simulation that was made by
Finite Element software we reach our desired design to have Factor Of Safety
equal to 4.6 for fatigue endurance. Figure 5(c) depicts FOS plot for infinite cycle
endurance under the no ball kicking impact.

The chip kick system is similar to direct kick, however its solenoid shape is
flat. The size of the plunger in new design has been increased by 150 percent
comparing to the old design that is 40mm in width and 53mm in length. The
mechanism which converts linear motion to angular motion is in the style of

Fig. 5. (a) The chip kick solenoid and plunger (b) Direct kick system (¢) Aluminum
alloy bar’s FOS plot for infinite cycle endurance under the load produced by no ball
kicking

FU-Fighter’s 2005 robot design. The chip kick mechanism is able to chip the
ball up to 7 m from the robot. Figure 5(a) shows our designed chip kick solenoid
with the plunger.

2.2 Electrical Design

Our electronic system consists of two electronic boards, the main board and
the kicker board. The main boards platform is based on a single chip Xilinx
Spartan XC35400 FPGA which in charges for wireless communication, BLDC
motor driving, Executing the low-level control loop and sending control signals
to the kicker board. On the other hand an ATMEGAS microcontroller is used to
perform charging/discharging tasks in a controlled manner on the kicker board.

Main Processor FPGA devices are mainly appropriate for parallel algorithms
implementation. Nevertheless sequential algorithms, particularly those that dont
need vast processing power, are easier to implement as a program for a micro-
controller. Due to less power consumption, simpler board layout and fewer prob-
lems with signal integrity and electromagnetic interface, we preferred to have
both microcontroller and FPGA array based features combined in one chip.
Consequently quadrature decoder, PWM generation, BLDC sequence generator
modules and serial communication are implemented in a hard CPU core which

is dedicated part of the integrated circuits, whereas sensors data decoder, con-
troller loop handler and other modules are implemented in a soft CPU core
which utilizes general purpose FPGA logic cells. We implemented a TSK3000
based soft processor on the FPGA. We use Altium Designer software to change
processor or modify the code running on it. To debug a phase of a design we
utilize a standardized debug interface via JTAG bus.

Motor Overcurrent Protection We use two overcurrent protection manner
to protect a BLDC from a receiving more than an exact Ampere of current. In
the first method if an overcurrent state is noticed by the software through the
real-time reading of current sensors data, the PWM duty cycle will be narrowed
up to the normal situation. In the second method a simple motor overcurrent
circuit is employed to cut the motor from its power supply when the overcurrent
situation is occurred. A current sensor measures the input current and yields a
corresponding voltage signal at its output. This output is connected to the input
of an analog comparator, with the other input coming from a reference voltage
source of specified ampere of current to be created. If the output of the current
sensor is greater than the specified value, the comparator will output the signal.
This signal is then hooked into a MOSFET switch. In an overcurrent situation
the switch will cut off the power to the motor and protect it from too much
current.

Low Level Control Two types of control commands are sent to the robots from
the remote Host PC, the motor rotational speed type and the robot velocity type
command. The former contains velocities for each motor and the latter contains
velocities of robot along x and y axis and angular velocity of the robot. The
quadrature decoder units implemented on FPGA decode each motors attached
encoders signals. These decoders count digital pulses and calculate the speed of
each motor. If the robot receives the velocity type command, the robot velocities
are calculated by means of the transformation of four motors rotational speed.
The desired velocity commands and the current calculated velocities are then fed
into a cascade control system. Robot velocities as primer variables are controlled
by adjusting the set point of each motors rotational speed as related secondary
variables controller. A discrete PID controller acts as primary loop controller,
which controls the robot velocities.

A discrete PI controller acts as secondary loop controller, which reads the
output of primary loop controller as set point, then the reference rotational speed
of each motor is calculated using the transformation matrix. When the reference
rotational speed is given to each motor, the PI controller generates the PWM
control signal. Then the robot can reach its desired motion. Obviously if the
robot receives the motor rotational speed type command, just the secondary loop
controller performs the control action. Reasonably the robot has slip between the
wheels and the ground in some amount. In absence of a sensor that measures the
robot velocity, this slip cause an error between actual motion and the desired
one. By means of an extended Kalman observer for state estimation which is

implemented at the high level control loop, this error will be compensated. The
performance of the compensation depends on how well the robots velocity is
estimated by the extended Kalman.

3 Planner

In this section we skip many part of our planner and just describe our high level
planner with focus of our Script language and behaviors of any role.

3.1 High Level Planner

The Coach layer is the first step in the high level planning (decision making)
loop. Choosing a formation for the team is done prior to any other decisions.
According to policies, that are a mixture of manual configurations and game-
state dependent updated values, each cycle the coach layer decides the team’s
formation. Therefore, each agent takes part in one of the main plans: defense,
midfield and offense.

In This year we have changed our high level planner a bit and added a
layer called Plans , in our game-On play we use this method which contains
3 main plans as mentioned , the defense plan works individually that contains
our Goalie and defenders but middle and offense plans are cooperating together
and the number of agents these plans should have is based on the manner of
opponents , if the opponent team is ball owner and attacking us the middle plan
will have more agents than offense and vice versa . Middle plan agents intend to
possess the ball owned by opponent and diminish their attacking opportunities
with marking, blocking, ball interception and etc. Offense plan includes agents
that are going to create attacking chances to score. One agent always takes the
role of the ”playmaker” (the agent that possesses the ball), other offense agents
should take suitable positions or support the playmaker during contention of
our playmaker and an opponent robot. But in our non-Play-on ,when the game
stops by referee and starts with a direct or indirect kick for any team, we use
old method and give any agent a role to execute. After running the plans, a set
of roles are assigned to some of agents that arent controled directly with plan
and can have an individual role , this role assigning occur in an optimized way,
so that minimum movement is needed for agents to execute their roles.

To perform a role, each agent may use a different set of basic skills. For
example "marker” itself is a role but it uses the ”gotopoint” skill to reach its
target. The hierarchy of the coach structure is shown in figure 6.

Each role works individually and should decide what to do in any situation in
game, so that each role can have multiple choices for what to do and its a bit hard
to choose the right manner any time. For solving this problem in our team we
found a solution that any role can have multiple behaviors, In general, each role
has its defined behavior which controls the roles operation. In this section we’re
going to explain the Playmaker’s behavior which is our AI’s most important role
that possesses the ball and should decide either kick the ball toward opponent

Goalie
Defense
Block
Mark
Playmake
Position
Support
Stop

\d

Scripts
[Defense] [Middle J

y

Offense

)
GotoPoint
GotoPointAvoid
Kick
OneTouch
Spin
TrackCurve
Intercept
FollowBall

E

Fig. 6. The hierarchy of coach stucture

goal or pass it to a teammate. Each behavior contains some Hierarchical Skills
execution that ends to a desired aim, considering a set of specific parameters and
probability of success and failure of that behavior. This prosperity is calculated
with a function (CBehaviour::probability()) , each behavior has its own function
for calculating this probability. Decision of which behavior should be executed
made as follow:

Reward*P - Penalty*(1-P)

In which the parameter ”P” is the success probability of that behavior and
Reward and Penalty are normalized predefined factors we configured for that
behavior (for example for playmaker, shooting toward the goal has a reward
equals 1.0 and penalty of -0.1, passing to other team mate has reward of 0.6 and
penalty of -0.3 and etc.) It’s obvious that this Reward and Penalty configuration
directly influences the manner of that role.

For additional details we're going to explain calculation of probability for
Shooting behavior and Passing behavior in playmakers role:

Shoot Probability: P = (A1 / A2) * 0.5 + min (A2 / 45, 1) * 0.5

In which A1 is the goal open space from the ball owner agent’s view, A2 is
angle between left bar and right bar of the opponent goal from the playmaker
agent view.

Pass Probability: P = P1 * P2

In which P1 is the open angle from ball owner agent to pass receiver agent
(considering pass receiver agent with a bigger radius that agent is able to receive
the pass in that area) same as checking the goal in shoot probability, P2 is the
probability that the pass receiver agent can score a goal with a direct shoot
through opponent goal or one-touching the pass through goal.

To prevent switching between behaviors of a role and changing its decision
frequently, some hysteresis is considered to stay on a decision for a while even
though another behavior would be better right after choosing one. For this pur-
pose we re-decide between behaviors after a while (for example 0.5 second).
These behavior can be saved with a specific name and for changing the game
strategy (for example to pass more than shooting toward goal or just shoot-
ing toward goal and not passing the ball to any other agent etc.) we just need
to choose another predefined behavior simply during a short timeout. Theres a
sample of our playmaker behavior in figure7.

@m®

chippass=0.5,-0.5
chiptogoal=1,-0.1
clear=0.5,-0.6
kick=0.9,-0.1
pass=0.4,-0.3
passtodefense=0.8,-0.6

gamel v

>gsitioning Params | Behaviours | Knowledge | Plays

Fig. 7. A sample of our playmaker behavior

As a matter of fact, in a small-size game, most of the time the game is in stop
mode (i.e. ball is moved out and the game should be started either by a direct or
an indirect kick), Thus having a knowledgeable game play when the game starts
(direct or indirect kicks) may result in more scores. Kickoff, indirect kick, direct
kick and penalty kick are the main "non-play-on” plays in a small-size robotic
game. To have more diverse "non-play-on” game plans, we have implemented a
script language to write multiple plays for any non-play-on game.

In this scrip language that implemented just for small size , at the first of
any play file we check the refBox signal to check which plays should be checked
too choose one of them for that part of the game . the refBox signals starts
with a 7$” sign at the first of any play (for example $ourkickoff, $theirindirect,
$ourpenalty and etc.) , after checking that part we have to check whether this
play is suitable for executing or not , for this purpose we have some conditions
(like "ballmoved” , ”ballinside(X-rect)” , ”agentcountof(plan,X)” and ...) to
check , any condition has its own Class inside the main code to check if that
condition is true or not , if that condition is used to enter a play a ”>" sign
should be placed right before that condition and if we want to exit that play
when a condition occur a ”<” sign should be placed right before that condition’s
name . It’s obvious we can check if two conditions occur together with using ” &”
operator between them. These plays can contain some blocks and any block can
have its own condition to enter.

Each one of these plays has its own favorability to be chosen , when more than
a play is qualified considering they’re conditions , a random number will choose
which one to execute ; any of them that has greater favorability is more likely
to be chosen . That number can be updated after any execution, if the executed
play was successful the favorability of that play will increase so that in next
same situations this play is more likely to be chosen and if that play fails for any
reason (for example the manner of opponent team in front of that play prevent us
to achieve any success) this number will decrease so that in next same situation
this failure is less likely to happen again. After choosing the best play and right
block of that play, any agent will get one of the roles declared in that block with
the defined parameter. any role can receive some predefined parameters through
parenthesis to act rightly (for example position(rect,@onetouch,...) that the first
parameter declares the rectangle to search inside that for suitable position and
the second one means agent should be ready to one-touch kick the ball toward
opponent goal). This script language has its own editor inside the user interface
so that we can edit the written plays easily when the Al is running. There is
a simple kickoff plan written in our game script and our editor appearance in
figure 8.

Defense Plan The main goal of defenders is to take suitable positions to cover
the goal from the ball’s predicted position as much as possible. The main idea
is to find places for defender robots on the bisector angles from ball to empty
areas of the goal. Although there is a strong need to clear the ball in some cases
to avoid danger.

Midfield Plan When the team has no possession on the ball, it has to prevent
the opponent from passing and block the passes and mark pass receiving agents
of the opponent team. This is done using an optimized agent marking.

Offense Plan

1. Playmaker

Playmaker is the agent that owns the ball and plans to make appropriate
pass/shoot commands to create scoring opportunities. Playmaker can choose
an action between passing, shooting, one touch kicking and spinning the ball.
There are some evaluation functions that predict success rate of each one of
the above-mentioned actions. Then playmaker chooses the best action using
these probabilities and some pre-defined constants that predict priority of
each one of the actions. For example most of the times playmaker should
find a way to kick the ball, so kicking has the highest priority, thus has the
highest constant. The set of all constants creates the attacking behavior of

the team.

Defense | Rects | GP Positioning Params | Behaviours = Knowledge ||Plays

Conditions

[EhE]]

ourindirectkhafankick
ourindirectsafe
ourindirectsafekick
ourindirectlongchip
ourindirectkhafan3top
ourindirectkhafankick3top
ourindirectkhafan3bottom
ourindirectkhafankick3bottom
ourkickoff
ourindirectcornerchip
attack
ourindirect1
theirkickoff
theirindirect
ourpenalty
theirpenalty
off3
off2

» off1
> attack

¥V YYVYVYYVYVYYVYYYVYVYVYVYV

stop->->stop3
->count(this,3)->!ballinside(oppcornerpeinttop)&!ballinside(oppcornerpointbottom)

start
ballmoved

count this,3
~kickoff3

,wing
ourmidfieldtopwin netouch

ourmidfieldbottom netouch

count this, 2

~kickoff2
kickoff,
ourmidfieldtopwin

count this,1
~kickoffi
,Kickoff

Load

Fig. 8. A sample of OurKickOff script

2. Positioning
The other agents in the attack plan are only searching for suitable positions
for catching probable passes or blocking opponent agents. For each point of
the field some features like goal-visibilty, angle to shoot, openness, distance
to goal, cornerness and distance from opponents are evaluated and mixed
using a power weighted multipication. Because the process is done for each
point of the field, it is necessary to find a way to accelarate this compution.
We used CUDA and OpenCL for this purpose to benefit from the parallel
processing power of the modern GPUs. A sample of our positioning output
is depicted in figure 9(b). The process could be done with a rate of 10 times
per second.

Fig. 9. (a) A screenshot of monitor (b) Output of positioning evaluation system.

Almost all skills make use of the Navigation module. First in this module,
a safe path is obtained using our developed version [5] of ERRT algorithm
[3][4]. The aforementioned enhancements not only help robots to find an
obstacle-free path, but also to find a path which is far enough from moving
dynamics objects. Next, a motion planning algorithm is used to generate a
trajectory. This algorithm employs a binary search on Velocity Space to plan
a trajectory for the desired path. Afterward, a nonlinear motion controller

is applied to enhance the tracking precision of the designed trajectory. And
finally generated commands are sent to each robot.

References

1. OpenGL - the industry standard for high performance graphics (2011), http://
www . opengl.org/, [accessed February, 2011]

2. Browning, B., Bruce, J., Bowling, M., Veloso, M.: STP: Skills, tactics, and plays for
multi-robot control in adversarial environments. Proceedings of the Institution of
Mechanical Engineers, Part I: Journal of Systems and Control Engineering 219(1),
33-52 (2005)

3. Bruce, J., Veloso, M.: Real-time randomized path planning for robot navigation.
Lecture Notes in Computer Science pp. 288-295 (2003)

4. Bruce, J., Veloso, M.: Safe multirobot navigation within dynamics constraints.
Proceedings-IEEE 94(7), 1398 (2006)

5. Monajjemi, V., Atashzar, S.F., Mehrabi, V., Nabi, M.M., Omidi, E., Pahlavani, A.,
Poorjandaghi, S.S., Sheikhi, E., Koochakzadeh, A., Ghaednia, H., Pour, S.M.M.,
Behmand, A., Rastgar, H., Arabi, M., Nouredanesh, M.: Parsian - team description
for robocup 2010 ssl. RoboCup 2010

6. Nokia Inc.: Qt - A cross-platform application and UI framework (2011), http://
qt.nokia.com/, [accessed February, 2011]

7. Poorjandaghi, S.S., Monajjemi, V., Mehrabi, V., Nabi, M.M., Koochakzadeh, A.,
Atashzar, S.F., Omidi, E., Pahlavani, A., Sheikhi, E., Behmand, A., Pour, S.M.M.,
Saeidi, A., Shamipour, S., Karkon, R.: Parsian - team description for robocup 2011
ssl. RoboCup 2011

8. Smith, R.: ODE - Open Dynamics Engine (2011), http://www.ode.org/, [accessed
February, 2011]

9. Zickler, S., Laue, T., Birbach, O., Wongphati, M., Veloso, M.: SSL-vision: The shared
vision system for the RoboCup Small Size League. RoboCup 2009: Robot Soccer
World Cup XIII pp. 425-436 (2010)

