
RoboDragons 2012 Extended Team Description

Kotaro Yasui, Taro Inagaki, Hajime Sawaguchi, Yuji Nunome, Hiroaki Sasai,
Yuki Tsunoda, Shinya Matsuoka, Naoto Kawajiri, Togo Sato,

Kazuhito Murakami and Tadashi Naruse

Aichi Prefectural University, Nagakute city, Aichi, 480-1198 JAPAN

Abstract. This paper describes a system configuration of RoboDrag-
ons, which is a team of Aichi-Prefectural University in Japan. This year,
we concentrate on the software development. Main technical improve-
ments include the algorithms of a mark defense strategy and a way how
robot follow the moving ball in the offense strategy.

1 Introduction

In the team description paper (TDP) of RoboDragons2012, we briefly stated the
overview of hardware and software architecture of our team and then described
in detail about the new software development this year.

For the hardware, our current robots are the fifth generation ones in our
Labs. Our teams have six robots at total. Each robot mainly consists of control
unit, voltage booster, motors, wheels, dribbling device, IR sensors, kick devices,
and communication device.

For the software, the base of our system is originated from the one at the
time when we made a joint team with CMU in 2004 and 2005. Since 2005, many
functions are added and improvements are accomplished. Then, this year, we
present the algorithms of marking a opponent robot in the defense strategy and
following the dynamic ball in the offense strategy.

In the extended team description (ETDP), we add the following descriptions
into the TDP.

– A detailed description of soccer module (Sec. 3.1),
– Expressions of unknown variables in Sec. 5,
– Description of a method of making the motion profile for the case of saturated

velocity.

Fig. 1. Current Robot
(Left: with cover, Right: without cover)

2 Hardware Architecture

In this section, we show the features of our robot. All devices attached to the
robot are described as below.

– a cylinder with dimensions of 145 mm height and 178 mm diameter
– the maximum percentage of ball coverage : about 18%

Device Description
Control Unit CPU: Hitachi’s SH2A processor with FPGA

Voltage Booster

convert from 15V DC to 150V ∼ 200V DC

condenser has a capacity of 4500 µ

charging time is about 2 sec (output voltage: 200V)

Motor
”EC 45 flat 30 W” by Maxon

gear reduction ratio between motor and omni-wheel is 21:64

Wheel
4 omni-wheels, each has 15 small tires in circumference

diameter: omni-wheel(56mm), small tire(13mm)

Dribble Device

dribble roller: 20mm in diameter and 73mm in length

(dribble roller and motor)

made of alminum shaft with silicon rubber

motor: ”EC 16 15W” by Maxon

gear reduction ratio between motor and roller is 1:5.4

IR Sensor
3 pairs with infra-red light emission diodes and photo diodes

irradiation angle of the light is about 15 degree

Kick Bar

made of a solenoid and 7075 alminum alloy

solenoid: a coil winding a 0.6 mmϕ enameled wire

(Straight) propel a ball with 11.2m/sec at maximum

(Chip) fly a ball with 2m distance and 1m height at maximum

Communication Device modem : ”FRH-SD07T” by Futaba (2.4GHz Spread Spectrum)

Control Unit Voltage Booster Motor Wheel

Dribble Device IR Sensor Kick Bar (straight) Communication
Device

This is a data/signal flow of a control program on the hardware. The descrip-
tion is written in RoboDragons 2010 TDP.[2]

modem
communication
 module

command
module

motor control
 module

command

voltage
booster

IR sensor

wheel speed

motor

packet

signal signal

signal

Fig. 2. Data/signal flow

3 Software Architecture

In this section, we show how our software architecture is composed and relates to
the information from real world. The overview of our software system is shown
as a diagram below.

Real World

Cameras Robots

SSL-Vision

Computer

RServer

Tracker world

Soccer

View

Radio

Fig. 3. Overview of Software System

The features of our host computer shown in Fig.3 are

– Intel Core 2 Duo P8400 with 2GB memory and Ubuntu 11.04/Linux OS.
– used to run 3 main modules (RServer, View, and Soccer).

(1) The Rserver module receives SSL-Vision data and uses tracker sub-
module to predict the ball and robot states by Kalman Filter. These
information are preserved to world storage, which is shared by other
modules. To send a command to each robot, a radio sub-module is used.

(2) The View module is used to see the simulated image of real world so
that users are easy to understand the situation. To do so, users set the
numbers of robots and our team color.

(3) The Soccer module is used to make an action command for each robot.
By using the information of real world, this module chooses the best
strategy, gives a role to each robot, and decides a route for each robot.

3.1 Soccer Module

A soccer module is used to make an action command for each robot. In order to
make a role, many patterns of strategies are needed to be compared from a field
condition. Then a soccer module decides a best strategy matched in the game
at the time. This is a movement of the soccer module to choose a best strategy.

Play Book Play File

Soccer
module

choose a best playfileWorld
Info. find a route for each robot

Fig. 4. Soccer Module

– A play book is a group of play files. All play files used in the game are
congregated in this play book. By this information, all patters of strategies
can be set and calculated by a soccer module.

– A play file, which is a strategy, indicates a role for each robot except a goal
keeper. Each play file has to be written a requirement for choosing compared
to a condition on the field.

– A world info. is given by a ssl-vision and contains a condition on the field.

– A soccer module compares a requirement for each play file with a field’s
condition by a world info. A strategy played in the game is chosen by this
result, which is a best match to the field’s condition.

After a role of each robot is chosen, the soccer module also decides a route for
each robot. This result is reflected to the command and sent to a robot by using
the modem(“Radio” box in Fig.3).

4 Mark Defense Strategy

A mark defense strategy is used to defense a goal from a shoot robot in a set
play. We have two kinds of tactics to exploit its strategy; one(ShootCut) is to
prevent the goal by locating a mark defense robot on the shoot path, and the
other(PassCut) is to intercept the ball on the pass.

4.1 Algorithm of ShootCut

1. allocate a defense robot to each shooting robot
2. process to mark a shooting robot RS by the corresponding defense robot RD

S: a coordinate on the position kicked by RS

G: a coordinate on the mid point of our goal
D: a coordinate on the center position of RD

(a) calculate the equation (1)

T =
p · q
|p|2

· p+G (1)

(b) if |
−→
GS| < |

−→
GT |, then T ← S

Fig. 5. A way to prevent the goal by ShootCut

In the Fig.5, p :
−→
GS and q :

−−→
GD

(c) If the distance between T and D < threshold distance t1, go to (d).
If not, go to (e).

(d) calculate T by a equation (2) as shown below.

T ← d1
p

|p|
+ T (2)

d1 is a distance approaching to RS and the given constant value
(e) target location of RD is calculated as T

4.2 Algorithm of PassCut

The algorithm of PassCut is almost as same as ShootCut, but change G to B,
where B is a center coordinate of ball location. After the calculated equation (1)
is shown as a diagram below.

Fig. 6. A way to prevent the goal by PassCut

In the Fig.6, p :
−→
BS and q :

−−→
BD

5 The algorithm of a robot following a ball in dynamic

1. Definition of the variables shown as below (refer to the figure 7).

B: a coordinate on the present ball position
R: a coordinate on the present robot position
VB: a vector of the present ball velocity
VR: a vector of the present robot velocity
G: a coordinate on the shooting target position
L: an offset length which is not to hit the ball

(the less distance between B and R, the less length of L)
DB: a constant ball decceleration, which takes account of a friction
Vmax: a max velocity of the robot
AR: a max acceleration of the robot
DR: a max decceleration of the robot

Let make an assumption that a robot can reach the ball in T second.

V
′

B: a vector of the ball velocity after T second

V
′

B = VB −DBT
VB

|VB|

V
′

R: a vector of the robot velocity after T second

B
′
: a coordinate on the ball position after T second

B
′
= 1

2 (VB + V
′

B)T +B

R
′
: a coordinate on the robot position after T second

R
′
=

−−→
GB

′∣∣−−→GB
′∣∣ ·L+B

′

p: a unit vector of VB (VB

|VB|)

q: a vector of rotating p by π/2(rad) on counter-clockwise
when p = (p1, p2), q = (−p2, p1)

dR: a vector from R to R
′

The subscript (p), (q) on the right top of VR, V
′

R, dR is a component of the

vector p and vector q of VR, V
′

R, dR respectively.

Fig. 7. Relation to the variables used in the algorithm

2. Explanation of the algorithm

In order to move the robot toward R
′
, we desolve the robot velocity vector

into components of a vector p and q directions.� �
the component of p: control the robot velocity by making a motion

profile as V
′(p)
R to be |V ′

B| when the robot moved d
(p)
R . 1 (step(3))

the component of q: control the robot velocity by making a motion

profile as V
′(q)
R to be 0 when the robot moved d

(q)
R . (step(4))� �

From the information so far, if T is given, we can make a motion profile of
the robot for p and q directions in turn, because we can calculate B

′
, R

′
,

dR, d
(p)
R , and d

(q)
R one after another. On the contrary, if the motion profile

of the robot for a direction p is made, we can calculate T . Therefore, we
suggest the method, which calculates T and makes a motion profile for the
direction p at the same time.

1 The reason why we are doing this is to make more oppotunity of kicking the ball
and accomplish the kick safety.

3. A method of making the motion profile for the direction p

Due to limitations of spaces, we assume the precondition below.

{d(p)R ≥ d
(q)
R } ∧ {V

(p)
R ≥ |VB|}

Make a motion profile shown as a figure below.

Fig. 8. Motion Profile

At this point, A
′

R = 1√
2
AR, D

′

R = 1√
2
DR. In the figure 8, unknown variables

(|V ′

B|, b, T1, T2, V1, d) are calculated in succession if T is provided.

|V
′

B| = −DBT + |VB|
b = |V

′

B|+D
′

RT

T1 =
b− V

(p)
R

D
′
R +A

′
R

T2 = T − T1

V1 = A
′

RT1 + V
(p)
R

d =
1

2
{(V (p)

R + V1)T1 + (V1 + |V
′

B|)T2}

Then, if d = d
(p)
R , we can succeed to make V

′(p)
R to be |V ′

B| when the robot

moved the distance d
(p)
R . Therefore, it is important to give T and T is calcu-

lated by bisection method, Newton’s method[1], and so on. The initial value
of T in its method is, for instance, the time when the ball is just stopped by
a constant ball decceleration DB. If V1 > V

′

max (= 1√
2
Vmax), then make the

motion profile including a time when the robot velocity is a constant V
′

max.

If V1 > V
′

max (= 1√
2
Vmax), then make a motion profile including a time

when the robot velocity is a constant V
′

max shown as a figure below.

Fig. 9. Motion Profile 2

As same as process before, unknown variables (|V ′

B|, b, T1, T2, T3, d) are
calculated in succession if T is provided.

|V
′

B| = −DBT + |VB|
b = |V

′

B|+D
′

RT

T1 =
V

′

max − V
(p)
R

A
′
R

T2 =
b− V

′

max

D
′
R

− T1

T3 = T − (T1 + T2)

d = V
′

maxT −
1

2
{ (V

′

max − V
(p)
R)T1 + (V

′

max − |V
′

B|)T3 }

Therefore, T is calculated by Newton’s method.

4. A method of making the motion profile for the direction q

From step(3), the time when the robot can reach the ball (T) is calculated,
so a robot position willing to move after T second (R

′
) can be calculated

by step(1). Then from R
′
, a distance between R and R

′
for a q direction

(d
(q)
R) can be calculated. Therefore, we can make a motion profile as V

′(q)
R

to be 0 when the robot moved d
(q)
R . 2 To make the motion profile, we use

the maximum acceleration of the robot as A
′

R, the maximum decceleration

of the robot as D
′

R, the maximum velocity of the robot as V
′

max.

5. A robot velocity after sending frame period from step(3) and (4)

From step(3) and (4), a motion profile for each direction of p and q is
provided. Then what we want to do is to calculate a robot velocity after
sending frame period (VRS) in order to move the robot toward R

′
. To do so,

look for the corresponding robot velocity for each direction where t = sending
frame period from the motion profile. We call the robot velocity searched for

p direction as V
(p)
RS , q direction as V

(q)
RS . Then, send to the robot for a vector

VRS = V
(p)
RS · p+ V

(q)
RS · q.

2 This is a most commonly used method for making a motion profile of the robot
velocity.

6 Conclusion

In this paper, we described our hardware and software architecture. This year,
especially, we try to improve the software strategy: the algorithms of marking
the opponent robot in defense and following the dynamic ball in offense. From
this algorithms, we think the marking defense in set play and the offense without
set play will improve in the game.

7 acknowledgement

This work was supported by the cheif director’s special study fund
of Aichi Prefectural University and the president’s special study fund
of Aichi Prefectural University.

References

1. “Newton’s Method”
<http://www.math.montana.edu/frankw/ccp/calculus/numerical/newton/learn.htm>

2. Akeru Ishikawa, Takashi Sakai, Jousuke Nagai, Taro
Inagaki, Hajime Sawaguchi, Yuji Nunome, Kazuhito Murakami and
Tadashi Naruse “RoboDragons 2010 Team Description”, 2010

3. Taro Inagaki, Hajime Sawaguchi, Akeru Ishikawa, Kotaro Yasui,
Tomomi Yasui, Yuji Nunome, Kazuhito Murakami and Tadashi Naruse “RoboDrag-
ons 2011 Team Description”, 2011

