PARSIAN 2018
Extended Team Description Paper

Mohammad Mahdi Rahimi, Mohammad Mahdi Shirazi,
Mohammad Amin Najaf Gholyan, Fateme Hashemi Chaleshtori, Nadia Moradi,
Kian Behzad, Seyed Hamidreza Roodabeh, Ali Gavahi, Fateme Farokhi
Moghadam, Seyed Ali Ghazi Asgar, Yasamin Alizadeh Gharib, Mahshid
Memarian, Amir Hadi Tavakoli, and Mohammad Azam Khosravi

Electrical Engineering Department
Amirkabir Univ. Of Technology (Tehran Polytechnic)
424 Hafez Ave. Tehran, Iran
{mmrahimi ,mhmmdshirazi,hashemi96,nadiamoradi,kian.behzad,hr.roodabeh,
aligavahi,fateme.fmoghadam,alizadeh yasi,m.a.khosravi}@aut.ac.ir
http://www.parsianrobotics.aut.ac.ir

Abstract. This paper presents Parsian’s hardware elaboration, the soft-
ware architecture and all improvements that have been made since last
year, including useful innovations in hardware, e.g. new ball detection
sensor, debugger module and robot’s fault recovery. Noteworthy enhance-
ments in software such as micro-service architecture by ROS, open loop
motion correction, motion profiler and new obstacle avoidance strategy
are described.

Keywords: microservice, ROS, motion control, fault recovery

1 Introduction

Parsian Robocup Soccer team formed in 2005 by Electrical Engineering Depart-
ment of Amirkabir University of Technology, and has been working on small
size league since then. This team aims to design and build SSL robots, compat-
ible with international RoboCup competition rules as an engineering project.
This team has been qualified for twelve consequent years for RoboCup SSL, and
participated in 2008 to 2017 RoboCup competitions. Parsian’s most significant
success is first place in RoboCup 2012 and RoboCup 2013 technical challenges
and also fourth place in RoboCup 2012 and 2017.

1.1 Team members

Mohammad Azam Khosravi: Control Theory, Supervisor
Mohammad Mahdi Shirazi: Control, Firmware, Team Leader
Mohammad Mahdi Rahimi: AT Software

Mohammad Amin Najaf Gholian: Electronic, Mechanic
Fateme Hashemi Chaleshtori: Al Software

Nadia Moradi: Al Software

Kian Behzad: AI Software

Seyed Hamidreza Roodabeh: Al Software

Ali Gavahi: Al Software

Fateme Farokhi Moghadam: Electronic

Seyed Ali Ghazi Asgar: Electronic

Yasamin Alizadeh Gharib: Electronic

Mahshid Memarian: Mechanic

Amir Hadi Tavakoli: AT Software

2 Hardware

2.1 Mechanic

Motor and Gearbox. This year the gear ratio has been changed from 3.6:1
to 2.5:1, to increase the maximum velocity. The major innovation is changing
the angle of the wheels’ cone, so that the robot’s center of mass can be lowered
and solenoids can be flattened as well. In this concept, the chip’s rocker shaft
has been raised since it has a higher transient impulse power, and chip solenoid
core collides to the center of percussion of chip shaft.

Dribbler and Spin. At the back of the dribbler, a spring-damper system has
been placed. According to the mass of the dribbler and the ball, it will be over-
damped at high speeds (over 10m/s). Since the relative stiffness of the dribbler
causes spin disruption and resonance in the movement of the ball, this is not
the perfect solution. So the chosen damper, has the ability to be calibrated for
different carpets.

2.2 Electronic

Kick Sensor. To detect the ball, infrared transmitter and infrared receiver sen-
sors are embedded in both sides of the robot’s dribbler. In the previous design, a
typical IR photo-diode sensor has been used that was highly affected by ambient
light. In the new design, a typical IR LED is used, along a TSOP1238 to receive
the infrared signals.

Each member of TSOP12xx series is sensitive to different frequencies of IR spec-
trum; the xx shows the frequency that the sensor detects. For generating the IR
signals at 38Khz, a 555 Timer IC is used in astable multi-vibrator mode. In this
mode, it works as a free running oscillator and generates approximately 38 kHz
square waves.

Debug Mode. Last year essential data such as battery voltage, wireless data-
lost ratio, motors fault and other failures has been sent to communication mod-
ule. This year, besides that, debug part has been added to send robot’s parame-
ters including wheels speed, control variables, etc. for monitoring and analyzing.

Fault Recovery. Theres two major methods in control for fault recovery proce-
dure; (1) active fault recovery that means the control system is redesigned when
a fault happens and (2) passive fault detection that means the control system is
robust enough to tolerate probable fault.

This year an active fault recovery has been implemented for motor-based faults.
First of all if a motor connection has been unplugged or the motor has some fail-
ures like hall-sensor faults, the systems kinematic is switched to an appropriate
three-wheel kinematic; so the robots able to move, either to play the game with
less efficiency or just to reach the legal substitution place in the field.

The second is the encoder fault that can happen because of different reasons like
unplugged encoder socket or electrical failure. In this case the velocity measure-
ment reference, is changed from encoder to the motors hall sensors.

Optical Flow. PAN3401 is a CMOS process optical mouse sensor single chip
with a PS/2 interface that serves as a non-mechanical motion estimation engine
for implementing a computer mouse. A CMOS image sensor sends each image
to a digital signal processor (DSP) for analysis. The DSP operating speed is 18
MIPS. It can detect patterns in the images and compare them to the previous
image. Based on the change in patterns over a sequence of images, the DSP
determines how far the sensor has moved during a certain time. The movement
measurement frequency is 100Hz. This sensor will be used in future works as a
local reference of linear velocities.

3 Control

Open-Loop Motion Correction. In order to achieve perfect motion control, a
new learning-based method has been implemented which fixes open-loop motion
errors. In polar coordinates, the robots’ movement is expressed as direction angle
(0), velocity (V) and angular velocity (w). In this method, two offsets have been
added to @ and §2; linear velocity is accurate enough and remains without offset.
At first, a PSO method was implemented with a complicated cost function to
optimize multiple variables simultaneously; but after reviewing the results, it
was realized that these two parameters (6 and w) are almost independent and a
simple method can be employed separately, for each parameter.

One efficient method that can be utilized to optimize a parameter, is Error Back
Propagation. It’s mainly used in finding weights of neural networks. The result
of this method was satisfying; one instant is depicted in Fig. [I]

Fig. 1. Open-loop motion learning

Angle-base Deceleration. The robots maximum deceleration depends on the
movement angle. Previously a constant deceleration had been used for all angles,
but this year it was extended to three different decelerations, one for each of the
forward, backward and normal angles. Desired deceleration for each angle will
be calculated by a weighted average, depending on movement angle (Fig. [2| and

3).

Motion Profiler. Motion profiler is a module which moves a robot in different
distances, angles, and directions. Then it records vision data, robots motion data
and dispatched commands, also extracts useful information from these raw data

(Fig. [4 and [5).

1. Robot velocity-time table of each motion
2. Remaining distance-time table of each motion
3. Command velocity-time table of each motion

Then it calculates some useful information including;:

1. Total delay by calculating time shift between speed and command
2. Time needed for a robot to move from one point to another, with four-
dimensional regression on the raw data

Max Normal Dec

Max Fwd Dec

Fig. 2. Deceleration in different angles

movementTheta = angleOf(targetPos - agentPos)
movementTheta -= agentDir

fabs(movementTheta) < = 90

DecCoef = (90 - fabs(movementTheta) / 90 « s(movementTheta)- 90) / 90

finalDec = maxDecForward DecCoef + maxDecNormal (1- DecCoef) finalDec = decMaxBackward DecCoef + decMaxNormal (1- DecCoef)

Fig. 3. Flow-chart of calculating desired deceleration

® world_model vel @ world_model vel
270 45.0 ® command vel 180 45.0 ® command vel
® remain dist ® remain dist
35
5
3.0 0}
25 4
.
* “r 3
' / \
2
1.0
1
0.5
0.0 [
0.00 0.25 0.50 0.75 1.00 125 1.50 175 2.00 0.0 0.5 1.0 15 2.0
time time

Fig. 4. Raw data which is collected for Fig. 5. Raw data which is collected for
short path long path

Obstacle Avoidance. Parsian has been using ERRT algorithm for years that is
mostly used in real-time approaches. In order to decrease the number of collisions
and also minimize the travel time, a new approach for obstacle avoidance has
been developed. This method does not intend to change FRRT implementation
or propose a new way to avoid obstacles; its rather about how to define the
obstacles space. This method is based on opponent robots capabilities:

1. Maximum Deceleration
2. Maximum Velocity

3. Agility Factor E|

4. Current Velocity

A probability area can be chosen for a certain upcoming time interval. If the
probability area for opponent robots and future position of our robot overlaps,
then the obstacle avoidance try to avoid that common space. (Fig. @

Opponent Robot

Velocity Vector

Our Robot Possible path

Velocity Vector |4eal Path

Obstacle
Area

Fig. 6. Generated path, considering overlap area

1 Agility Factor represents by how many degrees, the movement direction of a robot
can change, during a specified time in its maximum velocity.

4 Software

4.1 Microservice

Parsian Software has been splitted into different components and the monolithic
based architecture has been altered to distributed. The new architecture has a
lot of benefits such as:

— Agility: New features and products can be added more quickly.

— Independent Deployment: The components are easy to understand and
modify; this can help a new team member become productive quickly.

— Polyglotism: Team has freedom to choose technology and programming
language that is best suited for a particular functionality.

— Better Fault Isolation: If one component fails, there’s a less chance to
impact other ones, and they will continue to work.

— Testability: Test surface is smaller than that of monolithic applications
thus its easier to be tested.

— Easier Analysis: The transferred messages leads to analyze the data in a
more convenient way.

4.2 ROS

Robot Operating System (ROS) is a collection of software frameworks for robot
software development. ROS provides services designed for heterogeneous com-
puter clusters such as hardware abstraction, low-level device control, implemen-
tation of commonly used functionality, message-passing between processes, and
package management. Running sets of ROS-based processes are represented in
a graph architecture, where processing takes place in nodes. Despite the impor-
tance of reactivity and low latency in robot control, ROS itself, is not a real-time
OS (RTOS), though it is possible to integrate ROS with real-time code. There
are three types of software In ROS ecosystem:

1. Language and platform-independent tools
2. ROS client library such as roscpp, rospy, rosjava, etc.
3. Packages containing application-related code by using ROS client libraries

In Parsian project the control and Al nodes are written in C++ using roscpp.
GUI, test nodes and tools like profilers are implemented with python scripts

(rospy).

4.3 Architecture

Package. Parsian Stack (ROS repository), packages and their dependencies
graph, are shown in Fig. [}

Packages are the first-level directory that separate source codes; so to imple-
ment a package for the first time, debug, upgrade or even re-factor it, only that
particular package and its dependencies need to be changed.

First-level dependencies of Parsian packages to ROS packages are shown in

Fig. 8

parsian_world_model parsian_agent parsian_ai parsian_communication rqt_parsian_gui

\ ¥ P ——

parsian_util parsian_protobuf_wrapper
A e
parsian_msgs

Fig. 7. Parsian packages graph

parsian_protobuf_wrapper

J parsian_agent LJ parsian_communication rqt_parsian_gui

parsian_ai

[———

nodelet dynamic_reconfigure

parsian_world_model

—_—s
=—

—
—

parsian_msgs

std_msgs

message_runtime message_generation

Fig. 8. Parsian packages and first-level dependencies graph

Node. Each package has a number of nodes inside, which are actually executable
files. Graph of nodes that run a game with one agent and Al is illustrated in
Fig. [0l Nodes can be implemented with different languages and environments.
They are executed separately, so when one node freezes or crashes, other ones
still execute without any problem. [8}

refbox

Iworldmodel_node Iworld_model

Ivision_node Ivision_detection

e)

0 agent_0
Iplanner_0 lagent_Oftask
planner_0 ~
2

Iplanner_0/path ‘ /Jagent_0/plan

commonconfig /agent_0/command

Fig. 9. Nodes and Topics graph for one agent with AI

/grsim_node

Message. The most important part of designing a distributed service, is defining
the messages that are going to be passed between nodes. This project tries to use
pre-defined ROS messages as much as possible, to make it easier for integration
with currently implemented services and nodes. You can find Parsian messages,
in its repository: https://github.com/ParsianRoboticLab/parsian_msgs

https://github.com/ParsianRoboticLab/parsian_msgs

4.4 Implementation

Latency and Delay. ROS framework has lacked real-time node and services,
mostly because of the latencies that serializing and parsing of messages cause,
although it is not always necessary to have low latency, in GUIs for instance.
The solution to resolve this latency is using nodelet for c++ nodes. (Table

Table 1. Latency of Message Passing

Measured parameter Nodelet Node
Mean Min Max Mean Min Max

world model (heavy message) [0.039 ms 0.073 ms 0.51 ms | 0.134 ms 0.885 ms 3.398 ms
robot command (light message)|0.024 ms 0.058 ms 0.42 ms | 0.064 ms 0.565 ms 3.232 ms
All message (critical path*) 0.494 ms 0.163 ms 3.220 ms|3.4634 ms 0.490 ms 32.763 ms

Nodelet. Nodelets are a type of ROS nodes, designed to run multiple nodes in
a single process, with each node running as a plugin with the help of pluginlib.
At the very first glance, nodelets are exactly like nodes, but there is a funda-
mental difference between them; nodes are executable and can be run separately,
whereas nodelets are not executable; they are just a software component that
are loaded as plugins on a special node, called nodelet manager.

Regular nodes use TCP protocol (although if nodes run on one single PC, the
shared-memory protocol supersedes TCP protocol). This works fine in most
cases, but if you have multiple processes that need to use messages that con-
tain large amounts of data exchange, then packaging the message, sending and
unpacking it can take too much time. If the two processes are on the same com-
puter, it is quicker to just send a pointer to that data rather than sending the
data itself via shared-memory.

Nodelet only works for processes on the same computer, since a pointer for one
computer doesn’t make sense for another ones. Nodes, on the other hand, can
work on connected computers over network, since you're sending the actual data.
To fix this problem a node is written for each nodelet as its nodelet manager. So
the nodes have become entirely independent and its possible to continue work
over networked computers.

Multi-agent. Since execution of robots skill is independent to each other, they
can be run in parallel; so there is a separate node for each robot, in which the
robot’s operations and tasks is handled. Agent-Node generates its own robot’s
commands and send them via ROS message.

Path Planner Node. Path planner node is separated from main agent nodes,
and run beside them. Advantage of this separation is:

1.

Path planning is run in a different process, parallel with agent nodes, so
there would be more CPU Utilization.

If a task takes too much time to complete, it wont effect main control task,
and command for robots will publish at a same frequency.

Development and debug of planner can be easily done by sending and re-
ceiving messages.

Strategy Server. There are strategy files for static plays in free-kicks[3]. Based
on situation, a strategy should be chosen to run. Loading strategies, finding the
best one that matches the game situation, and also analyzing the result of the
selected strategy execution, are gathered into a node named strategy-server. The
routine of strategy selection service:

1.

In free kicks, Al node sends a request to strategy-server node that includes
game state and a list of players.

strategy-server node first collects some strategies that can be executed con-
sidering the data received from Al node.

Chooses the best one, based on its history, and sends the strategy to Al node
as a response.

Evaluating the executed strategy is implemented in AI node and the result
is sent back to strategy-server to be analyzed. These data is recorded and
will influence the next strategy selection.

GUI and rqt rqt is a Qt-based framework for GUI development in ROS. rqt
makes it easier to manage the various windows on the screen at the same time.
A GUI is developed in a separated node for each widget. All GUI processes run
separately and use message passing to communicate with other nodes. (Fig.

Robot status and monitor widget in rqt

5 Conclusion

As Robocup SSL rules has changed recently, Al and behavior will be updated
to be compatible with new rules.

Also major work on passing and receiving in dynamic plays, started in 2016[2],
will be used in a real game, since time calculation with new Kalman Filter and
motion profiler is now accurate enough to execute passing.

Last year, auto-profiler and log analyzer were proven to be very useful. In Iran
Open and Robocup 2017[1], auto-profiling and log analyzing, greatly reduced
the amount of team setup time, which allowed the team to focus more on strat-
egy planning. Although the main software that was built in 2008, and improved
each year, has given successful competition result for the last years (the result
summarized in Table 2] changing old monolithic software architecture to dis-
tributed in this year, was another enormous work that makes a great advantage
to develop, test and debug system. Also the huge number of open-source project
helped not to reinvent the wheel.

This year, Parsian hardware’s changes aim to stabilize robots with detecting
and monitoring their faults. Next steps are online configuration of robot’s low-
level parameters, and then auto-calibrating the controller’s parameters along the
game.

In control part, motion controller is improved greatly by improving Kalman
Filter, open-loop calibration and motion profiler; most important outcome is
accurate timing for robot’s movement.

Table 2. Parsian Achievements

Year Result

RoboCup 2014 Round Robin
RoboCup 2015 Lucky Loser
RoboCup 2016 Lucky Loser
RoboCup 2017 4th Place

References

1. Rahimi, M., Shirazi, M., Arfaee, M., Najaf Gholian, M., Zamani, A., Hosseini,
H., Hashemi, F., Moradi, N., Ahsani, A., Jafari, M., Zahedi, A., Abdoullahi, P.,
Zolanvari, A., Khosravi, M.: Parsian 2017 Extended Team Description Paper for
RoboCup. (2017)

2. Rahimi, M., Shirazi, M., Dajkhosh, P., Zolanvari, A., Arfaee, M., Kazemi H., Abbasi,
A., Saeidi, A., Khosravi, M.: Parsian 2016 Extended Team Description Paper for
RoboCup. (2016)

3. Zolanvari, A., Shirazi, M., Dajkhosh, P., Naderi, M., Arfaee, M., Behbooei, M.,
Kazemi H., Tazimi, E., Rahimi, M., Saeidi, A.,: Parsian 2015 Extended Team De-
scription Paper for RoboCup. (2015)

	PARSIAN 2018Extended Team Description Paper

